Skip to main content
Log in

Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The method of solution continuation with respect to a parameter is used to solve an initial value problem for a system of ordinary differential equations with several limiting singular points. The solution is continued using an argument (called the best) measured along the integral curve of the problem. Additionally, a modified argument is introduced that is locally equivalent to the best one in the considered domain. Theoretical results are obtained concerning the conditioning of the Cauchy problem parametrized by the modified argument in a neighborhood of each point of its integral curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Shalashilin and E. B. Kuznetsov, Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics (Editorial URSS, Moscow, 1999; Kluwer Academic, Dordrecht, 2003).

    MATH  Google Scholar 

  2. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  3. M. P. Galanin and S. R. Khodzhaeva, Preprint No. 98, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2013). http://library.keldysh.ru/preprint.asp?id=2013-98

    Google Scholar 

  4. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996; Mir, Moscow, 1999).

    Book  MATH  Google Scholar 

  5. D. F. Davidenko, “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii,” Dokl. Akad. Nauk SSSR 88 (4), 601–602 (1953).

    MathSciNet  Google Scholar 

  6. D. F. Davidenko, “On the approximate solution of systems of nonlinear equations,” Ukr. Mat. Zh. 5 (2), 196–206 (1953).

    MathSciNet  Google Scholar 

  7. E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics (Nauka, Moscow, 1988; Springer, 1991).

    MATH  Google Scholar 

  8. E. B. Kuznetsov and V. I. Shalashilin, “The Cauchy problem as a problem of the continuation of a solution with respect to a parameter,” Comput. Math. Math. Phys. 33 (12), 1569–1579 (1993).

    MathSciNet  MATH  Google Scholar 

  9. E. B. Kuznetsov, “The best parameterization in curve construction,” Comput. Math. Math. Phys. 44 (9), 1462–1472 (2004).

    MathSciNet  Google Scholar 

  10. E. B. Kuznetsov and A. Yu. Yakimovich, “Optimal parametrization in approximation of curves and surfaces,” Comput. Math. Math. Phys. 45 (5), 732–745 (2005).

    MathSciNet  MATH  Google Scholar 

  11. E. B. Kuznetsov, “On the best parametrization,” Comput. Math. Math. Phys. 48 (12), 2162–2171 (2008).

    Article  MathSciNet  Google Scholar 

  12. E. B. Kuznetsov and S. S. Leonov, “Pure bending for the multimodulus material beam under creep conditions,” Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. Program. 6 (4), 26–38 (2013).

    MATH  Google Scholar 

  13. N. N. Kalitkin and I. P. Poshivaylo, “Solving the Cauchy problem with guaranteed accuracy for stiff systems by the arc length method,” Math. Models Comput. Simul. 7 (1), 24–35 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. D. Krasnikov and E. B. Kuznetsov, “Parametrization of a solution at bifurcation points,” Differ. Equations 45 (8), 1218–1222 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. D. Krasnikov and E. B. Kuznetsov, “Numerical continuation of solution at singular points of codimension one,” Comput. Math. Math. Phys. 55 (11), 1802–1822 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (BINOM, Moscow, 2006) [in Russian].

    MATH  Google Scholar 

  17. L. D. Kudryavtsev, A Course in Mathematical Analysis, Vol. 2: Series and Differential and Integral Calculus of Functions of Several Variables (Drofa, Moscow, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Kuznetsov.

Additional information

Original Russian Text © E.B. Kuznetsov, S.S. Leonov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 6, pp. 934–957.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, E.B., Leonov, S.S. Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points. Comput. Math. and Math. Phys. 57, 931–952 (2017). https://doi.org/10.1134/S0965542517060094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517060094

Keywords

Navigation