Skip to main content
Log in

On the Cauchy Problem for Nondegenerate Parabolic Integro-Differential Equations in the Scale of Generalized Hölder Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Parabolic integro-differential nondegenerate Cauchy problem is considered in the scale of Hölder spaces of functions whose regularity is defined by a radially O-regularly varying Lévy measure. Existence and uniqueness and the estimates of the solution are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Kassman, M.: The Cauchy problem and the martingale problem for integrodifferential operators with non-smooth kernels. Osaka J. Math. 46, 661–683 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Aljančić, S., Arandeloviċ, D.: O -regularly varying functions. PIMB (NS) 22(36), 5–22 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press (1987)

  4. Bass, R.F.: Regularity results of stable-like operators. J. Funct. Anal. 257, 2693–2722 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer (1976)

  6. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chang-Lara, H., Dávila, G.: Regularity for solutions of nonlocal parabolic equations. Calc. Var. Partial Diff. Equ. 49(1–2), 139–172 (2014)

    Article  Google Scholar 

  8. Chen, Z., Zhang, X., Zhao, G.: Well posedness of supercritical SDEdriven by Lévy processes with irregular drifts. arXiv:1709.04632 [math.PR] (2017)

  9. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential -A. North-Holland (1978)

  10. Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Cont. Dyn.-A 33(6), 2319–2347 (2013)

    Article  MathSciNet  Google Scholar 

  11. Farkas, W., Jacob, N., Schilling, R.L.: Function spaces related to continuous negative definite functions: ψ-Bessel potential spaces. Diss. Math., 1–60 (2001)

  12. Farkas, W., Leopold, H.G.: Characterization of function spaces of generalized smoothness. Annali di Matematica 185, 1–62 (2006)

    Article  Google Scholar 

  13. Kalyabin, G.A.: Description of functions in classes of Besov-Lizorkin-Triebel type. Trudy Mat. Inst. Steklov 156, 160–173 (1980)

    MATH  Google Scholar 

  14. Kalyabin, G.A., Lizorkin, P.I.: Spaces of functions of generalized smoothness. Math. Nachr. 133, 7–32 (1987)

    Article  MathSciNet  Google Scholar 

  15. Karamata, J.: Sur un mode de croissance regulière des fonctions. Mathematica (Cluj) 4, 38–53 (1930)

    MATH  Google Scholar 

  16. Kim, P., Song, R., Vondraček, Z.: Heat Kernels of non-symmetric jump processes: Beyond the stable case. Potential Anal. 49(1), 37–90 (2018)

    Article  MathSciNet  Google Scholar 

  17. Mikulevičius, R., Pragarauskas, H: On the Cauchy problem for parabolic integro-differential operators in Hölder classes and the uniqueness of the Martingale problem. Potential Anal. 40(4), 539–563 (2014)

    Article  MathSciNet  Google Scholar 

  18. Schwab, R., Silvestre, L.: Regularity for parabolic integro-differential equations with very irregular kernels. Analysis PDE 9(3), 727–772 (2016)

    Article  MathSciNet  Google Scholar 

  19. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  Google Scholar 

  20. Xu, F.: On the Cauchy problem for parabolic integro-differential equations with space-dependent coefficients in generalized Hölder classes. arXiv:1810.00677 [math.PR] (2018)

Download references

Acknowledgements

We are very grateful to our reviewer for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mikulevičius.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We simply state a few results that were used in this paper. Let \(\nu \in \mathfrak {A}^{\alpha }\), and

$$ \begin{array}{@{}rcl@{}} \delta \left( r\right) &=&\delta_{\nu }\left( r\right) =\nu \left( \left\{ \left\vert y\right\vert >r\right\} \right) >0,r>0, \\ w &=&w_{\nu }\left( r\right) =\delta \left( r\right) ^{-1},r>0,\lim_{r\rightarrow 0}w\left( r\right) =0. \end{array} $$

We assume that w = wν is an O-RV function at zero, i.e.,

$$ r_{1}\left( \varepsilon \right) =\overline{\lim_{x\rightarrow 0}}\frac{ \delta \left( \varepsilon x\right)^{-1}}{\delta \left( x\right)^{-1}} <\infty ,\varepsilon >0. $$

By Theorem 2 in [2], the following limits exist:

$$ p_{1}=\lim_{\varepsilon \rightarrow 0}\frac{\log r_{1}\left( \varepsilon \right) }{\log \varepsilon }\leq q_{1}=\lim_{\varepsilon \rightarrow \infty } \frac{\log r_{1}\left( \varepsilon \right) }{\log \varepsilon }. $$
(1)

Lemma 8

Assume w = wν is an O-RV function at zero.

  1. a)

    Let β > 0 and τ > −βp1. There is C > 0 so that

    $$ {{\int}_{0}^{x}}t^{\tau }w\left( t\right)^{\beta }\frac{dt}{t}\leq Cx^{\tau }w\left( x\right)^{\beta },x\in (0,1], $$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left (x\right )^{\beta }=0.\)

  2. b)

    Let β > 0 and τ < −βq1. There is C > 0 so that

    $$ {{\int}_{x}^{1}}t^{\tau }w\left( t\right)^{\beta }\frac{dt}{t}\leq Cx^{\tau }w\left( x\right)^{\beta },x\in (0,1],\text{ } $$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left (x\right )^{\beta }=\infty .\)

  3. c)

    Let β < 0 and τ > −βq1. There is C > 0 so that

    $$ {{\int}_{0}^{x}}t^{\tau }w\left( t\right)^{\beta }\frac{dt}{t}\leq Cx^{\tau }w\left( x\right)^{\beta },x\in (0,1], $$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left (x\right )^{\beta }=0.\)

  4. d)

    Let β < 0 and τ < −βp1. There is C > 0 so that

    $$ {{\int}_{x}^{1}}t^{\tau }w\left( t\right)^{\beta }\frac{dt}{t} ={\int}_{1}^{x^{-1}}t^{-\tau }w\left( \frac{1}{t}\right)^{\beta }\frac{dt}{t} \leq Cx^{\tau }w\left( x\right)^{\beta },x\in (0,1], $$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left (x\right )^{\beta }=\infty .\)

Proof

The claims follow easily by Theorems 3, 4 in [2]. Because of the similarities, we will prove c) only. Let β < 0 and τ > −βq1 . Then

$$ \begin{array}{@{}rcl@{}} \overline{\lim_{t\rightarrow \infty }}\frac{w\left( \frac{1}{\varepsilon t} \right)^{\beta }}{w\left( \frac{1}{t}\right)^{\beta }} &=&\overline{ \lim_{x\rightarrow 0}}\frac{w\left( x\right)^{-\beta }}{w\left( \varepsilon^{-1}x\right)^{-\beta }}=\overline{\lim_{x\rightarrow 0}}\frac{w\left( \varepsilon \varepsilon^{-1}x\right)^{-\beta }}{w\left( \varepsilon^{-1}x\right)^{-\beta }} \\ &=&\overline{\lim_{x\rightarrow 0}}\frac{w\left( \varepsilon x\right)^{-\beta }}{w\left( x\right)^{-\beta }}=r_{1}\left( \varepsilon \right)^{-\beta }<\infty ,\varepsilon >0. \end{array} $$

Hence \(w\left (\frac {1}{t}\right )^{\beta },t\geq 1\), is an O-RV function at infinity with

$$ p=\lim_{\varepsilon \rightarrow 0}\frac{\log r_{1}\left( \varepsilon \right)^{-\beta }}{\log \varepsilon }=-\beta p_{1}\leq -\beta q_{1}=\lim_{\varepsilon \rightarrow \infty }\frac{\log r_{1}\left( \varepsilon \right)^{-\beta }}{\log \varepsilon }=q. $$

Then for x ∈ (0, 1],

$$ {{\int}_{0}^{x}}t^{\tau }w\left( t\right)^{\beta }\frac{dt}{t} ={\int}_{x^{-1}}^{\infty }t^{-\tau }w\left( \frac{1}{t}\right)^{\beta }\frac{ dt}{t}\leq Cx^{\tau }w\left( x\right)^{\beta } $$

by Theorem 3 in [2], and \(\lim _{x\rightarrow 0}x^{\tau }w\left (x\right )^{\beta }=0\) according to Theorem 4 in [2]. □

Corollary 5

Assume w = wν is an O-RV function at zero and p1 > 0. Let N > 1,β > 0. Then

$$ \sum\limits_{j=0}^{\infty }w\left( N^{-j}\right)^{\beta }<\infty . $$

Proof

Indeed,

$$ \sum\limits_{j=0}^{\infty }w\left( N^{-j}\right)^{\beta }\leq {\int}_{0}^{\infty }w\left( N^{-x}\right)^{\beta }dx\leq C{{\int}_{0}^{1}}w\left( t\right)^{\beta }\frac{dt}{t}<\infty , $$

because, by Lemma 8a),

$$ {{\int}_{0}^{x}}w\left( t\right)^{\beta }\frac{dt}{t}\leq Cw\left( x\right)^{\beta },x\in \left[ 0,1\right] . $$

We will need some Lévy measure moment estimates.

Lemma 9

Let \(\nu \in \mathfrak {A}^{\alpha },\)andw = wν be an O-RV function at zero with p1,q1 defined in Eq. 1. Assume

$$ \begin{array}{@{}rcl@{}} 0 &<&p_{1}\leq q_{1}<1\text{ if }\alpha \in \left( 0,1\right) , \\ 0 &<&p_{1}\leq 1\leq q_{1}<2\text{ if }\alpha =1, \\ 1 &<&p_{1}\leq q_{1}<2\text{ if }\alpha \in \left( 1,2\right) . \end{array} $$

Then

  1. (i)
    $$ \begin{array}{@{}rcl@{}} \sup_{R\in (0,1]}{\int}_{\mathbf{R}^{d}}\left( \left\vert y\right\vert \wedge 1\right) \tilde{\nu}_{R}\left( dy\right) &<&\infty \text{ if }\alpha \in \left( 0,1\right) , \\ \sup_{R\in (0,1]}{\int}_{\mathbf{R}^{d}}\left( \left\vert y\right\vert^{2}\wedge 1\right) \tilde{\nu}_{R}\left( dy\right) &<&\infty \text{ if } \alpha =1, \\ \sup_{R\in (0,1]}{\int}_{\mathbf{R}^{d}}\left( \left\vert y\right\vert^{2}\wedge \left\vert y\right\vert \right) \tilde{\nu}_{R}\left( dy\right) &<&\infty \text{ if }\alpha \in (1,2). \end{array} $$
  2. (ii)
    $$ \inf_{R\in (0,1]}{\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\tilde{\nu}_{R}\left( dy\right) \geq c_{1}, $$

    for some c1 > 0.

Proof

  1. (i)

    Let α ∈ (0, 1) . Then by Lemma 8 (recall \( \nu _{R}\left (dy\right ) =\nu \left (Rdy\right ) ,\tilde {\nu }_{R}\left (dy\right ) =w\left (R\right ) \nu _{R}\left (dy\right ) ,\delta \left (R\right ) =w\left (R\right )^{-1}\)),

    $$ \begin{array}{@{}rcl@{}} {\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert \nu_{R}\left( dy\right) &=&R^{-1}{\int}_{\left\vert y\right\vert \leq R}\left\vert y\right\vert \nu \left( dy\right) \\ &=&R^{-1}{{\int}_{0}^{R}}[\delta \left( s\right) -\delta \left( R\right) ]ds, \end{array} $$

    and

    $$ {\int}_{\mathbf{R}_{0}^{d}}\left( \left\vert y\right\vert \wedge 1\right) \tilde{\nu}_{R}\left( dy\right) =R^{-1}w\left( R\right) {{\int}_{0}^{R}}w\left( s\right)^{-1}ds\leq C,~R\in (0,1]. $$

Let α = 1. Then similarly using Lemma 8, we have

$$ \int \left( \left\vert y\right\vert^{2}\wedge 1\right) \tilde{\nu}_{R}\left( dy\right) =2R^{-2}w\left( R\right) {{\int}_{0}^{R}}s^{2}w\left( s\right)^{-1}\frac{ds}{s}\leq C,~R\in (0,1]. $$

Let α ∈ (1, 2). Then similarly,

$$ \begin{array}{@{}rcl@{}} &&R^{-1}{\int}_{\left\vert y\right\vert >R}\left\vert y\right\vert \nu \left( dy\right) =R^{-1}{\int}_{0}^{\infty }\delta \left( s\vee R\right) ds \\ &=&\delta \left( R\right) +R^{-1}{\int}_{R}^{\infty }\delta \left( s\right) ds=\delta \left( R\right) +R^{-1}{\int}_{R}^{\infty }w\left( s\right)^{-1}ds \end{array} $$

and with R ∈ (0, 1],

$$ \begin{array}{@{}rcl@{}} R^{-2}{\int}_{\left\vert y\right\vert \leq R}\left\vert y\right\vert^{2}\nu \left( dy\right) &=&2R^{-2}{{\int}_{0}^{R}}s^{2}[w\left( s\right)^{-1}-w\left( R\right)^{-1}]\frac{ds}{s} \\ &=&2R^{-2}{{\int}_{0}^{R}}s^{2}w\left( s\right)^{-1}\frac{ds}{s}-w\left( R\right)^{-1}. \end{array} $$
(2)

Hence, by Lemma 8,

$$ \begin{array}{@{}rcl@{}} &&\int \left( \left\vert y\right\vert^{2}\wedge \left\vert y\right\vert \right) \nu_{R}\left( dy\right) \\ &\leq &2R^{-2}{{\int}_{0}^{R}}s^{2}w\left( s\right)^{-1}\frac{ds}{s} +R^{-1}{{\int}_{R}^{1}}w\left( s\right)^{-1}ds+R^{-1}{\int}_{1}^{\infty }w\left( s\right)^{-1}ds \\ &=&2R^{-2}{{\int}_{0}^{R}}s^{2}w\left( s\right)^{-1}\frac{ds}{s} +R^{-1}{{\int}_{R}^{1}}w\left( s\right)^{-1}ds+R^{-1}{\int}_{\left\vert y\right\vert >1}\left\vert y\right\vert \nu \left( dy\right) \\ &\leq &Cw\left( R\right)^{-1},~R\in (0,1]. \end{array} $$
  1. (ii)

    By Eq. 2, for R ∈ (0, 1],

    $$ \begin{array}{@{}rcl@{}} {\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\tilde{\nu} _{R}\left( dy\right) &=&w\left( R\right) {\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\nu_{R}\left( dy\right) \\ &=&2R^{-2}{{\int}_{0}^{R}}s^{2}\left[\frac{w\left( R\right) }{w\left( s\right) }-1\right] \frac{ds}{s}=2{{\int}_{0}^{1}}s^{2}\left[\frac{w\left( R\right) }{w\left( Rs\right) } -1\right]\frac{ds}{s}. \end{array} $$

    Hence, by Fatou’s lemma,

    $$ \underline{\lim }_{R\rightarrow 0}{\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\tilde{\nu}_{R}\left( dy\right) \geq 2{{\int}_{0}^{1}}s^{2}\left[\frac{1}{r_{1}\left( s\right) }-1\right]\frac{ds}{s}=c_{1}>0 $$

    if |{s ∈ [0, 1] : r1 (s) < 1}| > 0, because

    $$ \lim \inf_{R\rightarrow 0}\frac{w\left( R\right) }{w\left( Rs\right) }=\frac{ 1}{\lim \sup_{R\rightarrow 0}\frac{w\left( Rs\right) }{w\left( R\right) }}= \frac{1}{r_{1}\left( s\right) },~s\in (0,1]. $$

According to [9], Chapter 3, 70-74, any Lévy measure \(\nu \in \mathfrak {A}^{\alpha }\) can be disintegrated as

$$ \nu \left( {\Gamma} \right) =-{\int}_{0}^{\infty }{\int}_{S_{d-1}}\chi_{\Gamma }\left( rw\right) {\Pi} \left( r,dw\right) d\delta \left( r\right) ,{\Gamma} \in \mathcal{B}\left( \mathbf{R}_{0}^{d}\right) , $$

where δ = δν, and π (r,dw),r > 0, is a measurable family of measures on the unit sphere Sd− 1 with π (r,Sd− 1) = 1,r > 0. The following is a straightforward consequence of Lemma 9(ii).

Corollary 6

Let \(\nu \in \mathfrak {A}^{\alpha },\)

$$ \nu \left( {\Gamma} \right) =-{\int}_{0}^{\infty }{\int}_{S_{d-1}}\chi_{\Gamma }\left( rw\right) {\Pi} \left( r,dw\right) d\delta \left( r\right) ,{\Gamma} \in \mathcal{B}\left( \mathbf{R}_{0}^{d}\right) , $$

where δ = δν,π (r,dw), r > 0, is a measurable family of measures on Sd− 1 with π (r,Sd− 1) = 1, r > 0. Assume \(w=w_{\nu }=\delta _{\nu }^{-1}\) is an O-RV function at zero satisfying assumptions of Lemma 9, and

$$ \inf_{\left\vert \hat{\xi}\right\vert =1}{\int}_{S_{d-1}}\left\vert \hat{\xi} \cdot w\right\vert^{2}{\Pi} \left( r,dw\right) \geq c_{0}>0. $$
(3)

Then assumption B holds.

Proof

Indeed, for \(\left \vert \hat {\xi }\right \vert =1,R\in (0,1],\) with C > 0,

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\left\vert y\right\vert \leq 1}\left\vert \hat{\xi}\cdot y\right\vert^{2}\nu_{R}\left( dy\right) \\ &=&R^{-2}{\int}_{\left\vert y\right\vert \leq R}\left\vert \hat{\xi}\cdot y\right\vert^{2}\nu \left( dy\right) =-R^{-2}{{\int}_{0}^{R}}{\int}_{S_{d-1}}\left\vert \hat{\xi}\cdot w\right\vert^{2}{\Pi} \left( r,dw\right) r^{2}d\delta \left( r\right) \\ &\geq &-c_{0}R^{-2}{{\int}_{0}^{R}}r^{2}d\delta \left( r\right) =c_{0}R^{-2}{\int}_{\left\vert y\right\vert \leq R}\left\vert y\right\vert^{2}\nu \left( dy\right) =c_{0}{\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\nu_{R}\left( dy\right) . \end{array} $$

Hence by Lemma 9(ii),

$$ \begin{array}{@{}rcl@{}} \inf_{R\in (0,1]}\inf_{\left\vert \hat{\xi}\right\vert =1}{\int}_{\left\vert y\right\vert \leq 1}\left\vert \hat{\xi}\cdot y\right\vert^{2}\tilde{\nu}_{R}\left( dy\right) &\geq &c_{0}~\inf_{R\in (0,1]}{\int}_{\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{2}\tilde{\nu}_{R}\left( dy\right) \\ &\geq &c_{0}c_{1}>0. \end{array} $$

Remark 1

Let α ∈ (0, 2) , \(\nu \in \mathfrak {A}^{\alpha }\), and wν be an O-RV function at zero, p1 > 0. By Theorems 3 and 4 in [2], for any σ ∈ (0,p1),

$$ \begin{array}{@{}rcl@{}} {\int}_{r<\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{\sigma }\nu \left( dy\right) &=&\sigma {{\int}_{r}^{1}}t^{\sigma }w\left( t\right)^{-1} \frac{dt}{t}-\delta \left( 1\right) \\ &\geq &cr^{\sigma }w\left( r\right)^{-1}-\delta \left( 1\right) \rightarrow \infty \end{array} $$

as r → 0. Hence p1α. On the other hand for any σ > q1, by Lemma 9,

$$ {\int}_{0<\left\vert y\right\vert \leq 1}\left\vert y\right\vert^{\sigma }\nu \left( dy\right) \leq \sigma {{\int}_{0}^{1}}t^{\sigma }w\left( t\right)^{-1} \frac{dt}{t}<\infty , $$

and αq1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikulevičius, R., Xu, F. On the Cauchy Problem for Nondegenerate Parabolic Integro-Differential Equations in the Scale of Generalized Hölder Spaces. Potential Anal 53, 839–870 (2020). https://doi.org/10.1007/s11118-019-09789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09789-5

Keywords

Mathematics Subject Classification (2010)

Navigation