Skip to main content
Log in

Time-independent reaction–diffusion equation with a discontinuous reactive term

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A two-dimensional singularly perturbed elliptic equation referred to in applications as the reaction–diffusion equation is considered. The nonlinearity describing the reaction is assumed to be discontinuous on a certain closed curve. On the basis of the generalized asymptotic comparison principle, the existence of smooth solution is proven and the accuracy of the asymptotic approximation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Orlov, N. Levashova, and T. Burbaev, “The use of asymptotic methods for modeling of the carriers wave functions in the Si/SiGe heterostructures with quantum-confined layers,” J. Phys. Conf. Ser. 586, 012003 (2015).

    Article  Google Scholar 

  2. N. T. Levashova, O. A. Nikolaeva, and A. D. Pashkin, “Simulation of the temperature distribution at the water–air interface using the theory of contrast structures,” Moscow Univ. Phys. Bull. 70 (5), 341–345 (2015).

    Article  Google Scholar 

  3. P. C. Fife and W. M. Greenlee, “Interior transition layers for elliptic boundary value problems with a small parameter,” Russ. Math. Surv. 29 (4), 103–131 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. N. Nefedov, “Method of differential inequalities for certain classes of nonlinear singularly perturbed problems with internal layers,” Differ. Uravn. 31 (7), 1132–1139 (1995).

    MathSciNet  MATH  Google Scholar 

  5. A. B. Vasil’eva, V. F. Butuzov, and N. N. Nefedov, “Contrast structures in singularly perturbed problems,” Fundament. Prikl. Mat. 4 (3), 799–851 (1998).

    MathSciNet  MATH  Google Scholar 

  6. A. B. Vasil’eva, V. F. Butuzov, and N. N. Nefedov, “Singularly perturbed problems with boundary and internal layers,” Proc. Steklov Inst. Math. 268, 258–273 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. F. Butuzov, N. T. Levashova, and A. A. Mel’nikova, “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter,” Comput. Math. Math. Phys. 52 (11), 1526–1546 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. F. Butuzov, N. T. Levashova, and A. A. Mel’nikova, “A steplike contrast structure in a singularly perturbed system of elliptic equations,” Comput. Math. Math. Phys. 53 (9), 1239–1259 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. N. Nefedov and M. A. Davydova, “Contrast structures in singularly perturbed quasilinear reaction–diffusion–advection equations,” Differ. Equations 49 (6), 688–706 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. N. Nefedov and M. A. Davydova, “Contrast structures in multidimensional singularly perturbed reaction–diffusion–advection problems,” Differ. Equations 48 (5), 745–755 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. N. Nefedov and Minkang Ni, “Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term,” Comput. Math. Math. Phys. 55 (12), 2001–2007 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations (Vysshaya Shkola, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  13. A. B. Vasil’eva and A. A. Plotnikov, “On parabolic equations with a small parameter,” Comput. Math. Math. Phys. 46 (5), 762–767 (2006).

    Article  MathSciNet  Google Scholar 

  14. D. H. Sattinger, “Monotone methods in elliptic and parabolic boundary value problems,” Indiana Univ. Math. J. 21 (11), 979–1001 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. I. Pohozaev, “On equations of the form,” Math. USSR-Sb. 41 (2), 269–280 (1982).

    Article  Google Scholar 

  16. N. N. Kalitkin and P. V. Koryakin, Numerical Methods, Vol. 2: Methods of Mathematical Physics(Akademiya, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Levashova.

Additional information

Original Russian Text © N.T. Levashova, N.N. Nefedov, A.O. Orlov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 5, pp. 854–866.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levashova, N.T., Nefedov, N.N. & Orlov, A.O. Time-independent reaction–diffusion equation with a discontinuous reactive term. Comput. Math. and Math. Phys. 57, 854–866 (2017). https://doi.org/10.1134/S0965542517050062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517050062

Keywords

Navigation