Skip to main content
Log in

Special solutions to Chazy equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the classical Chazy equation, which is known to be integrable in hypergeometric functions. But this solution has remained purely existential and was never used numerically. We give explicit formulas for hypergeometric solutions in terms of initial data. A special solution was found in the upper half plane H with the same tessellation of H as that of the modular group. This allowed us to derive some new identities for the Eisenstein series. We constructed a special solution in the unit disk and gave an explicit description of singularities on its natural boundary. A global solution to Chazy equation in elliptic and theta functions was found that allows parametrization of an arbitrary solution to Chazy equation. The results have applications to analytic number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Berndt, Number Theory in the Spirit of Ramanujan (Am. Math. Soc., Providence, 2006).

    Book  MATH  Google Scholar 

  2. J. Chazy, “Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularitiés essentielles mobiles,” C.R. Acad. Sci. Paris 149, 563–565 (1909).

    MATH  Google Scholar 

  3. G. Halphen, “Sur une systéme d'équations différentielles,” C.R. Acad. Sci. Paris 92, 1101–1103 (1881).

    Google Scholar 

  4. M. J. Ablowitz, S. Chakravarty, and H. Halm, “Integrable systems and modular forms of level 2,” J. Phys. A: Math. Gen. 39, 15341–15353 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. A. Glarkson and P. J. Olver, “Symmetry and the Chazy equation,” J. Differ. Equations 124, 225–246 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Blasius, “Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Z. Math. Phys. 56, 1–37 (1908).

    MATH  Google Scholar 

  7. J. P. Boyd, “The Blasius function in the complex plane,” Experiment. Math. 8, 381–394 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. P. Varin, “A solution of the Blasius problem,” Comput. Math. Math. Phys. 54 (6), 1025–1036 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and the Inverse Scattering, Lect. Notes Math., Vol. 149 (Cambridge Univ. Press, Cambridge, 1991).

    Book  MATH  Google Scholar 

  10. Z. Nehari, Conformal Mapping (McGraw-Hill, New York, 1952).

    MATH  Google Scholar 

  11. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol.1.

  12. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory (Springer-Verlag, New York, 1990).

    Book  MATH  Google Scholar 

  13. N. Joshi and M. D. Kruskal, “A local asymptotic method of seeing the natural barrier of the solutions of the Chazy equation,” in Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, Ed. by P. A. Clarkson, NATO ASI Ser. C: Math. Phys. Sci., Vol. 413 (Kluwer, Dordrecht, 1992).

    Google Scholar 

  14. M. D. Kruskal, N. Joshi, and R. Halburd, “Analytic and asymptotic methods for nonlinear singularity analysis: A review and extensions of tests for the Painlevé property,” in Integrability of Nonlinear Systems, Ed. by Y. Kosmann-Schwarzbach (Springer, Berlin, 2004).

    Google Scholar 

  15. Sloane Online Encyclopedia of Integer Sequences. http://oeis.org/wiki/Sum_of_divisors_function.

  16. C. Carathéodory, Theory of Functions of a Complex Variable (Chelsea, New York, 1954), Vol.2.

  17. S. Chakravarty and M. J. Ablowitz, Parameterizations of the Chazy Equation. http://arxiv.org/abs/0902.3468v1.

  18. D. Zagier, “Elliptic modular forms and their applications”, in The 1-2-3 on Modular Forms, Ed. by J. H. Bruinier et al. (Springer, Berlin, 2008).

    Google Scholar 

  19. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).

    MATH  Google Scholar 

  20. S. Ramanujan, “On certain arithmetical functions,” Trans. Camb. Philos. Soc. 22, 159–184 (1916); in Collected Papers of Srinivasa Ramanujan, Ed. by G. H. Hardy et al. (Cambridge Univ. Press, Cambridge, 1927).

    Google Scholar 

  21. P. C. Toh, “Differential equations satisfied by Eisenstein series of level 2,” Ramanujan J. 25, 179–194 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. G. Huard et al., “Elementary evaluation of certain convolution sums involving divisor functions,” in Number Theory for the Millennium II, Ed. by M. A. Bennett (A. K. Peters, Natick, Mass., 2002), pp. 229–274.

    Google Scholar 

  23. J. C. Lagarias, “An elementary problem equivalent to the Riemann hypothesis,” Math. Mon. 109 (6), 534–543 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. P. Varin, “Flat expansions and their applications,” Comput. Math. Math. Phys. 55 (5), 797–810 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. V. Nesterenko, “Algebraic independence for values of Ramanujan functions,” in Introduction to Algebraic Independence Theory, Ed. by Y. V. Nesterenko and P. Philippon (Springer, Berlin, 2001).

    Chapter  Google Scholar 

  26. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, New York, 2007).

    MATH  Google Scholar 

  27. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge Univ. Press, Cambridge, 1927).

    MATH  Google Scholar 

  28. C. G. J. Jacobi, “Fundamenta Nova Theoriae Functionum Ellipticarum,” in Jacobi’s Gesammelte Werke (Chelsea, New York, 1969).

    Google Scholar 

  29. G. Robin, “Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann,” J. Math. Pures Appl. Neuv. Ser. 63 (2), 187–213 (1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Varin.

Additional information

Published in Russian in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 2, pp. 210–236.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varin, V.P. Special solutions to Chazy equation. Comput. Math. and Math. Phys. 57, 211–235 (2017). https://doi.org/10.1134/S0965542517020154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517020154

Keywords

Navigation