Skip to main content
Log in

An Elliptic Garnier System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a linear system of difference equations whose entries are expressed in terms of theta functions. This linear system is singular at \({4m+12}\) points for \({m \geq 1}\), which appear in pairs due to a symmetry condition. We parameterize this linear system in terms of a set of kernels at the singular points. We regard the system of discrete isomonodromic deformations as an elliptic analogue of the Garnier system. We identify the special case in which m = 1 with the elliptic Painlevé equation; hence, this work provides an explicit form and Lax pair for the elliptic Painlevé equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff G.D.: General theory of linear difference equations. Trans. Am. Math. Soc. 12(2), 243–284 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkhoff G.D.: The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations. Proc. Am. Acad. 49, 512–568 (1913)

    Article  Google Scholar 

  3. Birkhoff G.D., Guenther P.E.: Note on a canonical form for the linear q-difference system. Proc. Natl. Acad. Sci. USA 27, 218–222 (1941)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Borodin A.: Isomonodromy transformations of linear systems of difference equations. Ann. Math. (2) 160(3), 1141–1182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Etingof P.: Galois groups and connection matrices of q-difference equations. Electron. Res. Announc. Am. Math. Soc. 1(1), 1–9 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fuchs R.: Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63(3), 301–321 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fuchs R.: Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 70(4), 525–549 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garnier R.: Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Ann. Sci. Éc. Norm. Sup. (3) 29, 1–126 (1912)

    Article  MATH  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series, Volume 35 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990). With a foreword by Richard Askey

  10. Jimbo M., Sakai H.: A qAnalog of the sixth Painlevé equation. Lett. Math. Phys. 38(2), 145–154 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y.: 10E 9 solution to the elliptic Painlevé equation. J. Phys. A 36(17), L263–L272 (2003)

    Article  ADS  MATH  Google Scholar 

  12. Krichever I.M.: Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem. Russ. Math. Surv. 59(6), 1117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mumford, D.: Tata Lectures on Theta I (Progress in Mathematics, vol 28). Birkhäuser, Boston (1983)

  14. Nijhoff, F.W., Delice, N.: On elliptic Lax pairs and isomonodromic deformation systems for elliptic lattice equations. arXiv preprint arXiv:1605.00829 (2016)

  15. Noumi, M., Tsujimoto, S., Yamada, Y.: Padé interpolation for elliptic Painlevé equation. In: Ohara, K. et al. (eds.) Symmetries, Integrable Systems, and Representations, pp. 463–482. Springer, London (2013)

  16. Okamoto, K.: Isomonodromic deformation and Painlevé equations, and the Garnier system. Université Louis Pasteur, Institut de Recherche Mathématique Avancée (1981)

  17. Okounkov, A., Rains, E.: Noncommutative geometry and Painlevé equations. Algebra Number Theory 9, 1363–1400 (2015)

  18. Ormerod, C.M.: The lattice structure of connection preserving deformations for q-Painlevé equations I. SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 045 (2011)

  19. Ormerod, C.M., Rains, E.M.: Commutation relations and discrete Garnier systems. SIGMA 12, 110 (2016)

  20. Ormerod, C.M., Rains, E.M.: A symmetric difference-differential Lax pair for Painlevé VI. J. Integrable Syst. 2(1), xyx003 (2017)

  21. Papageorgiou V.G., Nijhoff F.W., Grammaticos B., Ramani A.: Isomonodromic deformation problems for discrete analogues of Painlevé equations. Phys. Lett. A 164(1), 57–64 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. Praagman C.: Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems. J. Reine Angew. Math. 369, 101–109 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Rains, E.M.: The noncommutative geometry of elliptic difference equations. arXiv:1607.08876

  24. Rains, E.M.: An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations). SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 088 (2011)

  25. Rains, E.M.: Generalized Hitchin systems on rational surfaces. arXiv preprint arXiv:1307.4033 (2013)

  26. Rains E.M., Spiridonov V.P.: Determinants of elliptic hypergeometric integrals. Funct. Anal. Appl. 43(4), 297–311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sakai H.: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220(1), 165–229 (2001)

    Article  ADS  MATH  Google Scholar 

  28. Sakai H.: A q-analog of the Garnier system. Funkc. Ekvac. 48(2), 273–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sauloy, J.: Galois theory of Fuchsian q-difference equations. Ann. Sci. Éc. Norm. Sup. (4), 36(6), 925–968 (2004)

  30. van der Put, M., Singer M.F.: Galois theory of difference equations, volume 1666 of Lecture Notes in Mathematics. Springer, Berlin (1997)

  31. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations, vol. 328. Springer, Berlin (2003)

  32. Yamada, Y., et al.: A Lax formalism for the elliptic difference Painlevé equation. SIGMA 5(042), 15 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris M. Ormerod.

Additional information

Communicated by A. Borodin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ormerod, C.M., Rains, E.M. An Elliptic Garnier System. Commun. Math. Phys. 355, 741–766 (2017). https://doi.org/10.1007/s00220-017-2934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2934-6

Navigation