Skip to main content
Log in

TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A finite-difference TVD scheme is presented for problems in nonequilibrium wave dynamics of heterogeneous media with different velocities and temperatures but with identical pressures of the phases. A nonlinear form of artificial viscosity depending on the phase relaxation time is proposed. The computed solutions are compared with exact self-similar ones for an equilibrium heterogeneous medium. The performance of the scheme is demonstrated by numerical simulation with varying particle diameters, grid sizes, and particle concentrations. It is shown that the scheme is efficient in terms of Fletcher’s criterion as applied to stiff problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media (Nauka, Moscow, 1987).

    Google Scholar 

  2. M. Baer and J. Nunziato, “A two-phase mixture theory for the deflagration-to detonation transition (DDT) in reactive granular materials,” Int. J. Multiphase Flows 12, 861–889 (1986).

    Article  MATH  Google Scholar 

  3. R. Saurel and R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows,” J. Comput. Phys. 150 (2), 425–467 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Zhilin and A. V. Fedorov, “Applying the TVD scheme to calculate two-phase flows with different velocities and pressures of the components,” Math. Models Comput. Simul. 1 (1), 72–87 (2008).

    Article  MathSciNet  Google Scholar 

  5. D. V. Sadin, V. O. Guzenkov, and S. D. Lyubarskii, “Numerical study of the structure of a finely disperse unsteady two-phase jet,” J. Appl. Mech. Tech. Phys. 46 (2), 224–229 (2005).

    Article  MATH  Google Scholar 

  6. F. Petitpas, E. Franquet, R. Saurel, and O. Le Metayer, “A relaxation-projection method for compressible flows: Part II. Artificial heat exchanges for multiphase shocks,” J. Comput. Phys. 225 (2), 2214–2248 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Saurel, F. Petitpas, and R. A. Berry, “Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures,” J. Comput. Phys. 228 (5), 1678–1712 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. O.-B. Fringer, S. W. Armfield, and R. L. Street, “Reducing numerical diffusion in interfacial gravity wave simulations,” Int. J. Numer. Methods Fluids 49, 301–329 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows (Wiley, New York, 1990)

    MATH  Google Scholar 

  10. D. A. Tropin and A. V. Fedorov, “High-order accurate numerical scheme for simulating the dynamics of a mixture of reactive gases and inert particles,” Vychisl. Tekhnol. 18 (4), 64–76 (2013).

    Google Scholar 

  11. G. Chen, C. Levermore, and T. Liu, “Hyperbolic conservation laws with stiff relaxation terms and entropy,” Commun. Pure. Appl. Math. 47, 787–830 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. V. Sadin, “A modified large-particle method for calculating unsteady gas flows in a porous medium,” Comput. Math. Math. Phys. 36 (10), 1453–1458 (1996).

    MathSciNet  MATH  Google Scholar 

  13. D. V. Sadin, “Stiffness problem in modeling wave flows of heterogeneous media with a three-temperature scheme of interphase heat and mass transfer,” J. Appl. Mech. Tech. Phys. 43 (2), 286–290 (2002).

    Article  MATH  Google Scholar 

  14. D. V. Sadin, “On stiff systems of partial differential equations for motion of heterogeneous media,” Mat. Model. 14 (11), 43–53 (2002).

    MATH  Google Scholar 

  15. A. A. Gubaidullin, A. I. Ivandaev, and R. I. Nigmatulin, “A modified “coarse particle” method for calculating nonstationary wave processes in multiphase dispersive media,” Comput. Math. Math. Phys. USSR 17 (6), 180–192 (1977).

    MathSciNet  MATH  Google Scholar 

  16. D. V. Sadin, “A method for computing heterogeneous wave flows with intense phase interaction,” Comput. Math. Math. Phys. 38 (6), 987–993 (1998).

    MathSciNet  MATH  Google Scholar 

  17. D. V. Sadin, “Stiff problems of a two-phase flow with a complex wave structure,” Fiz.-Khim. Kinetika Gaz. Din. 15 (4), 1–17 (2014).

    Google Scholar 

  18. L. E. Sternin, B. P. Maslov, A. A. Shraiber, and A. M. Podvysotskii, Two-Phase Mono- and Polydispersed Gas- Particle Flows (Mashinostroenie, Moscow, 1980) [in Russian].

    Google Scholar 

  19. A. F. Chudnovskii, Heat Transfer in Dispersions (Gostekhteorizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  20. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357–393 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. V. Sadin, “On the convergence of a certain class of difference schemes for the equations of unsteady gas motion in a disperse medium,” Comput. Math. Math. Phys. 38 (9), 1508–1513 (1998).

    MathSciNet  MATH  Google Scholar 

  22. A. S. Ivanov, V. V. Kozlov, and D. V. Sadin, “Unsteady flow of a two-phase disperse medium from a cylindrical channel of finite dimensions into the atmosphere,” Fluid Dyn. 31 (3), 386–391 (1996).

    Article  MATH  Google Scholar 

  23. D. V. Sadin, Fundamentals of the Theory of Modeling Wave Heterogeneous Processes (Voennyi Inzh.-Kosmich. Univ., St. Petersburg, 2000) [in Russian].

    MATH  Google Scholar 

  24. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991), Vol. 1.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sadin.

Additional information

Original Russian Text © D.V. Sadin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 12, pp. 2098–2109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadin, D.V. TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type. Comput. Math. and Math. Phys. 56, 2068–2078 (2016). https://doi.org/10.1134/S0965542516120137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516120137

Keywords

Navigation