Skip to main content
Log in

Effects of slip and heat transfer on a peristaltic flow of a Carreau fluid in a vertical asymmetric channel

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present paper the results of numerical modeling of peristaltic flow of a Carreau fluid in a vertical asymmetric channel are presented. The effects of slip and heat transfer have been analyzed. Using the approximation of long wavelength, low Reynolds number and with the suitable dimensionless variables, the reduced equations have been solved analytically by regular perturbation method. The expressions for velocity, stream function, temperature, pressure gradient and pressure rise have been computed which strongly depend on the physical parameters of the Carreau fluid. With the help of analytical results the expression for pressure rise has been computed using numerical integration scheme. To reveal the tendency of the solutions, typical results for velocity, temperature, stream function, pressure gradient and pressure rise are presented for different values of controlling parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Latham, Fluid motion in a peristaltic pump, M.Sc. Thesis (Massachusetts Institute of Technology, Cambridge, 1966).

    Google Scholar 

  2. T. D. Brown, T. K. Hung, “Computational and experimental investigations of two dimensional non linear peristaltic flows,” J. Fluid Mech. 83, 249–272 (1977).

    Article  MATH  Google Scholar 

  3. A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long wave length at low Reynolds number,” J. Fluid Mech. 37, 799–825 (1969).

    Article  Google Scholar 

  4. M. H. Haroun, “Nonlinear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel,” Comput. Material Sci. 39, 324–333 (2007).

    Article  Google Scholar 

  5. M. H. Haroun, “Effects of Deborah number and phase difference on peristaltic transport of a third order fluid in an asymmetric channel,” Commun. Nonlinear Sci. Numer. Simul. 12, 1464–1480 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Kothandapani and S. Srinivas, “Nonlinear peristaltic transport of Newtonian fluid in an inclined asymmetric channel through a porous medium,” Phys. Lett. A 372, 1265–1276 (2008).

    Article  MATH  Google Scholar 

  7. M. V. Subba Reddy, A. Ramachandra Rao, and S. Sreenath, “Peristaltic motion of a power law fluid in an asymmetric channel,” Int. J. Nonlinear Mech. 42, 1153–1161 (2007).

    Article  Google Scholar 

  8. O. Eytan and D. Elad, “Analysis of intra-uterine fluid motion induced by uterine contractions,” Bull. Math. Biol. 61, 221–238 (1999).

    Article  Google Scholar 

  9. E. F. Elshehawey, N. T. Eladabe, E. M. Elghazy, and A. Ebaid, “Peristaltic transport in an asymmetric channel through a porous medium,” Appl. Math. Comput. 182, 140–150 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Hayat, Nida Alivi, and N. Ali, “Peristaltic mechanism of a Maxwell fluid in an asymmetric channel,” Nonlinear Anal. Real World Appl. 9, 1474–1490 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Wang, T. Hayat, and N. Ali, “Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel,” Phys. A 387, 347–362 (2008).

    Article  MathSciNet  Google Scholar 

  12. N. Ali and T. Hayat, “Peristaltic motion of a Carreau fluid in an asymmetric channel,” Appl. Math. Comput. 193, 535–552 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Kothandapani and S. Srinivas, “Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel,” Int. J. Nonlinear Mech. 43, 915–924 (2008).

    Article  Google Scholar 

  14. S. Nadeem and Noreen Sher Akbar, “Influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid in a nonuniform inclined tube,” Commun. Nonlinear Sci. Numer. Simul. 14, 4100–4113 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Nadeem and Noreen Sher Akbar, “Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of Adomian decomposition method,” Commun. Nonlinear Sci. Numer. Simul. 14, 3844–3855 (2009).

    Article  MathSciNet  Google Scholar 

  16. Kh. S. Mekheimer and Y. Abdelmaboud, “Influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope,” Phys. Lett. A 372, 1657–1665 (2008).

    Article  MATH  Google Scholar 

  17. S. Srinivas and M. Kothandapani, “Peristaltic transport in an asymmetric channel with heat transfer,” Int. Commun. Heat Mass Transfer 35, 514–522 (2008).

    Article  Google Scholar 

  18. S. Nadeem and Safia Akram, “Heat transfer in a peristaltic flow of MHD fluid with partial slip,” Commun. Nonlinear Sci. Numer. Simul. 15, 312–321 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Nadeem and Safia Akram, “Slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the effect of induced magnetic field,” Int. J. Numer. Methods Fluids 63, 374–394 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Mishra and A. Ramachandra Rao, “Peristaltic transport of a Newtonian fluid in an asymmetric channel,” Z. Angew. Math. Phys. 53, 532–550 (2003).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akram.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S. Effects of slip and heat transfer on a peristaltic flow of a Carreau fluid in a vertical asymmetric channel. Comput. Math. and Math. Phys. 54, 1886–1902 (2014). https://doi.org/10.1134/S0965542514080028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514080028

Keywords

Navigation