Skip to main content
Log in

Variance reduction techniques for estimation of integrals over a set of branching trajectories

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Monte Carlo variance reduction techniques within the supertrack approach are justified as applied to estimating non-Boltzmann tallies equal to the mean of a random variable defined on the set of all branching trajectories. For this purpose, a probability space is constructed on the set of all branching trajectories, and the unbiasedness of this method is proved by averaging over all trajectories. Variance reduction techniques, such as importance sampling, splitting, and Russian roulette, are discussed. A method is described for extending available codes based on the von Neumann-Ulam scheme in order to cover the supertrack approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Booth, “Monte Carlo variance reduction approaches for non-Boltzmann tallies,” Nuclear Sci. Eng. 116, 113–134 (1994).

    Google Scholar 

  2. T. Valentine, “MCNP-DSP user’s manual,” Tech. Rep. ORNL/TM-13334 (Oak Ridge Natl. Lab., 1997).

    Google Scholar 

  3. T. Mori, K. Okumura, and Y. Nagaya, “Development of the MVP Monte Carlo code at JAERI,” Trans. Am. Nucl. Soc. 84, 45–46 (2001).

    Google Scholar 

  4. E. Ficaro, “KENO-NR: A Monte Carlo simulating the 252Cf-source-driven noise analysis experimental method for determining subcriticality,” Ph.D. Thesis (University of Michigan, 1991).

    Google Scholar 

  5. S. M. Ermakov and G. A. Mikhailov, Statistical Modeling (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  6. S. M. Ermakov, Monte Carlo Method and Related Topics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  7. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., The Monte Carlo Methods in Atmospheric Optics (Nauka, Novosibirsk, 1976; Springer-Verlag, Berlin, 1980).

    Google Scholar 

  8. G. A. Mikhailov, Optimization of Weighted Monte Carlo Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  9. I. M. Sobol’, Numerical Monte Carlo Methods (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  10. V. V. Uchaikin and A. A. Lagutin, Stochastic Importance (Energoatomizdat, Moscow, 1993) [in Russian].

    Google Scholar 

  11. A. V. Lappa and D. S. Burmistrov, “New fluctuating weighted Monte Carlo methods and their application to cascade transport of superhigh-energy particles,” Mat. Model. 7(5), 100–114 (1995).

    MATH  Google Scholar 

  12. A. V. Lappa, “Weighted estimate of the Monte-Carlo method for calculating the higher moments of the additive transport characteristics of multiplying particles,” USSR Comput. Math. Math. Phys. 30(1), 91–100 (1990).

    Article  MathSciNet  Google Scholar 

  13. N. M. Borisov and M. P. Panin, “Adjoint Monte Carlo calculations for pulse-height-spectrum,” Monte Carlo Methods. Appl. 4(3), 273–284 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  14. N. M. Borisov, Candidate’s Dissertation in Mathematics and Physics (Moscow Engineering Physics Inst., Moscow, 1999).

    Google Scholar 

  15. T. Booth, “Pulse height tally variance reduction in MCNP5,” Tech. Rep. LA-13995, NM (Los Alamos Nat. Lab., Los Alamos, 1994).

    Google Scholar 

  16. J. Hendricks and G. W. McKinney, “Pulse height tallies with variance reduction,” Proceedings of Monte Carlo 2005 Topical Meeting, Chattanooga, Tennessee, USA, April 17–21 (2005).

    Google Scholar 

  17. E. Shuttleworth, “The pulse height distribution tally in MCBEND,” Proceedings of the International Conference on Radiation Shielding ICRS’9, Tsukuba, Japan, October 17–22 (1999).

    Google Scholar 

  18. M. Szieberth and J. Kloosterman, “New methods for the Monte Carlo simulation of neutron noise experiments in ADS,” Proceedings of the 7th International Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Jeju, Korea, October 14–16 (2002).

    Google Scholar 

  19. V. V. Nekrutkin, “Evaluation of integrals over a space of trees by Monte Carlo method,” in Monte Carlo Methods in Numerical Mathematics and Mathematical Physics (Vychisl. Tsentr Sib. Akad. Akad. Nauk SSSR, Novosibirsk, 1974) pp. 94–102.

    Google Scholar 

  20. S. M. Ermakov, V. V. Nekrutkin, and A. S. Sipin, Random Processes for Classical Equations of Mathematical Physics (Nauka, Moscow, 1984; Kluwer Academic, Dordrecht, 1989).

    Google Scholar 

  21. E. B. Dynkin, Theory of Markov Processes (Fizmatgiz, Moscow, 1959; Dover, New York, 2006).

    Google Scholar 

  22. T. E. Harris, The Theory of Branching Processes (Springer-Verlag, Berlin, 1963; Mir, Moscow, 1966).

    Book  MATH  Google Scholar 

  23. MCNP: A General Monte Carlo N-Particle Transport Code, Version 4C, Manual LA-13709-M, Ed. by J. Briesmeister, (Los Alamos Natl. Lab., NM, 2000).

    Google Scholar 

  24. E. A. Tsvetkov and V. V. Shakhovskii, “Justification of DXTRAN modification of the Monte Carlo method on the basis of reciprocity relations for different systems,” Trudy Tr. Mosk. Fiz.-Tekh. Inst. 1(2), 207–215 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Tsvetkov.

Additional information

Original Russian Text © E.A. Tsvetkov, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 2, pp. 183–194.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvetkov, E.A. Variance reduction techniques for estimation of integrals over a set of branching trajectories. Comput. Math. and Math. Phys. 54, 195–205 (2014). https://doi.org/10.1134/S0965542514020122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514020122

Keywords

Navigation