Skip to main content
Log in

Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Parameter estimation in HEP experiments often involves Monte Carlo simulation to model the experimental response function. A typical application are forward-folding likelihood analyses with re-weighting, or time-consuming minimization schemes with a new simulation set for each parameter value. Problematically, the finite size of such Monte Carlo samples carries intrinsic uncertainty that can lead to a substantial bias in parameter estimation if it is neglected and the sample size is small. We introduce a probabilistic treatment of this problem by replacing the usual likelihood functions with novel generalized probability distributions that incorporate the finite statistics via suitable marginalization. These new PDFs are analytic, and can be used to replace the Poisson, multinomial, and sample-based unbinned likelihoods, which covers many use cases in high-energy physics. In the limit of infinite statistics, they reduce to the respective standard probability distributions. In the general case of arbitrary Monte Carlo weights, the expressions involve the fourth Lauricella function \(F_{D}\), for which we find a new finite-sum representation in a certain parameter setting. The result also represents an exact form for Carlson’s Dirichlet average \(R_{n}\) with \(n > 0\), and thereby an efficient way to calculate the probability generating function of the Dirichlet-multinomial distribution, the extended divided difference of a monomial, or arbitrary moments of univariate B-splines. We demonstrate the bias reduction of our approach with a typical toy Monte Carlo problem, estimating the normalization of a peak in a falling energy spectrum, and compare the results with previously published methods from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Louis Lyons, Contemp. Phys. 54, 1 (2013)

    Article  ADS  Google Scholar 

  2. F. Halzen, Eur. Phys. J. C 46, 669 (2006)

    Article  ADS  Google Scholar 

  3. Lyndon Evans, Philip Bryant, JINST 3, S08001 (2008)

    Google Scholar 

  4. Kurt Binder, Dieter W. Heermann, Monte Carlo simulation in statistical physics, in Graduate Texts in Physics (Springer, 2010)

  5. Roger Barlow, Christine Beeston, Comput. Phys. Commun. 77, 219 (1993)

    Article  ADS  Google Scholar 

  6. Dmitry Chirkin, Likelihood description for comparing data with simulation of limited statistics (2016) available on-line at http://inspirehep.net/record/1413017?ln=de

  7. G. Bohm, G. Zech, Nucl. Instrum. Methods Phys. Res. Sect. A 691, 171 (2012)

    Article  ADS  Google Scholar 

  8. G. Bohm, G. Zech, Nucl. Instrum. Methods Phys. Res. Sect. A 748, 1 (2014)

    Article  ADS  Google Scholar 

  9. F. Beaujean, H.C. Eggers, W.E. Kerzendorf, Mon. Not. R. Astron. Soc. 477, 3425 (2018)

    Article  ADS  Google Scholar 

  10. Ritu Aggarwal, Allen Caldwell, Eur. Phys. J. Plus 127, 24 (2012)

    Article  Google Scholar 

  11. C.H. Sim, Stat. Prob. Lett. 15, 135 (1992)

    Article  Google Scholar 

  12. F. Di Salvo, G. Lovison, Parametric inference on samples with random weights, unpublished (1998)

  13. F. Di Salvo, Integral Transforms Spec. Funct. 19, 563 (2008)

    Article  MathSciNet  Google Scholar 

  14. P.G. Moschopoulos, Ann. Inst. Stat. Math. 37, 541 (1985)

    Article  MathSciNet  Google Scholar 

  15. Harold Exton, Multiple hypergeometric functions and applications (Horwood, 1976)

  16. James M. Dickey, J. Am. Stat. Assoc. 78, 628 (1983)

    Article  Google Scholar 

  17. Willard Miller, J. Math. Phys. 13, 1393 (1972)

    Article  ADS  Google Scholar 

  18. Akio Hattori, Tosihusa Kimura, J. Math. Soc. Jpn. 26, 1 (1974)

    Article  ADS  Google Scholar 

  19. B.C. Carlson, J. Math. Anal. Appl. 7, 452 (1963)

    Article  MathSciNet  Google Scholar 

  20. Bille Chandler Carlson, Special Functions of Applied Mathematics (Academic Press, 1977)

  21. Edward Neuman, Patrick J. Van Fleet, J. Comput. Appl. Math. 53, 225 (1994)

    Article  MathSciNet  Google Scholar 

  22. N. Balakrishnan, Discrete Multivariate Distributions (Wiley Online Library, 1997)

  23. Ping Zhou, J. Comput. Appl. Math. 236, 94 (2011)

    Article  MathSciNet  Google Scholar 

  24. Youneng Ma, Jinhua Yu, Yuanyuan Wang, J. Appl. Math. 2014, 895036 (2014)

    Google Scholar 

  25. J.D. Keckic Mitrinovic, S. Dragoslav, The Cauchy Method of Residues (Springer Netherlands, 1984)

  26. B.C. Carlson, J. Approx. Theory 67, 311 (1991)

    Article  MathSciNet  Google Scholar 

  27. G.S. Monti, The shifted-scaled Dirichlet distribution in the simplex, Universitat de Girona, Departament d’Informàtica i Matemàtica Aplicada (2011)

  28. Jieqing Tan, Ping Zhou, Adv. Comput. Math. 23, 333 (2005)

    Article  MathSciNet  Google Scholar 

  29. Norman Lloyd Johnson, Samuel Kotz, Urn models and their application

  30. Harold Jeffreys, Proc. R. Soc. London A 186, 453 (1946)

    Article  Google Scholar 

  31. M.G. Aartsen, M. Ackermann, J. Adams, J.A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, C. Arguelles, T.C. Arlen et al., Astrophys. J. 796, 109 (2014)

    Article  ADS  Google Scholar 

  32. Ilía Nikolaevich Bronshtein and Konstantin Adol’fovich Semendyayev. Handbook of Mathematics (Springer Science & Business Media, 2013)

  33. Peter J.M. van Laarhoven, Ton A.C.M. Kalker, J. Comput. Appl. Math. 21, 369 (1988)

    Article  MathSciNet  Google Scholar 

  34. Georgy P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, in Mathematical Monographs, Vol. 59 (American Mathematical Soc., 1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Glüsenkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glüsenkamp, T. Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data. Eur. Phys. J. Plus 133, 218 (2018). https://doi.org/10.1140/epjp/i2018-12042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12042-x

Navigation