Skip to main content
Log in

Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

High-order accurate explicit and implicit conservative predictor-corrector schemes are presented for the radiative transfer and energy equations in the multigroup kinetic approximation solved together by applying the splitting method with respect to physical processes and spatial variables. The original system of integrodifferential equations is split into two subsystems: one of partial differential equations without sources and one of ordinary differential equations (ODE) with sources. The general solution of the ODE system and the energy equation is written in quadratures based on total energy conservation in a cell. A feature of the schemes is that a new approximation is used for the numerical fluxes through the cell interfaces. The fluxes are found along characteristics with the interaction between radiation and matter taken into account. For smooth solutions, the schemes approximating the transfer equations on spatially uniform grids are second-order accurate in time and space. As an example, numerical results for Fleck’s test problems are presented that confirm the increased accuracy and efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967), 2 Vols.

    Google Scholar 

  2. G. I. Marchuk and V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport (Atomizdat, Moscow, 1971; Harwood, New York, 1986).

    MATH  Google Scholar 

  3. B. N. Chetverushkin, Mathematical Simulation of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  4. N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer-Verlag, Berlin, 1971).

    Google Scholar 

  5. B. G. Carlson and G. I. Bell, “Solution of the transport equation by the Sn method,” in Proceeding of the Second Unified Nations International Conference on the Peaceful Uses of Atomic Energy, P/2386 (Unified Nations, 1958), Vol. 16, pp. 535–549.

    Google Scholar 

  6. B. G. Carlson and G. I. Bell, “Numerical solution of neutron transport problems,” in Proceedings of Symposia in Applied Mathematics, Vol. 11: Nuclear Reactor Theory (Am. Math. Soc., Providence, RI, 1961; Gosatomizdat, Moscow, 1963).

    Google Scholar 

  7. L. P. Bass, A. M. Voloshchenko, and T. A. Germogenova, Discrete Ordinate Methods for Radiative Transfer Problems (Inst. Prikl. Mat. im. M.V. Keldysha Ross. Akad. Nauk, Moscow, 1986) [in Russian].

    Google Scholar 

  8. V. S. Vladimirov, “Numerical solution of the equation for the sphere,” in Numerical Mathematics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1958), pp. 3–33 [in Russian].

    Google Scholar 

  9. A. V. Nikiforova, V. A. Tarasov, and V. E. Troshchiev, “Solution of the kinetic equations by the divergent method of characteristics,” USSR Comput. Math. Math. Phys. 12(4), 251–260 (1972).

    Article  Google Scholar 

  10. E. S. Andreev and M. Yu. Kozmanov, “SVET method for solving thermal radiation transport problems,” VANT, Ser. Metod. Program. Chisl. Reshen. Zadach Mat. Fiz., No. 2, 50–59 (1985).

    Google Scholar 

  11. P. C. R. Featrier, Acad. Sci. Paris 258, 3198–3210 (1964).

    Google Scholar 

  12. G. Rybicki, “A modified feautrier method,” J. Quant. Spectroscopy Rad. Transfer 11, 589–596 (1971).

    Article  Google Scholar 

  13. V. Ya. Gol’din, “A quasi-diffusion method of solving the kinetic equation,” USSR Comput. Math. Math. Phys. 4(6), 136–149 (1964).

    Article  MathSciNet  Google Scholar 

  14. D. Yu. Anistratov, E. N. Aristova, and V. Ya. Gol’din, “Nonlinear method for solving problems of radiative transfer in media,” Mat. Model. 8(12), 3–28 (1996).

    MathSciNet  MATH  Google Scholar 

  15. A. I. Zuev, “Application of the Newton-Kantorovich method for solving the problem of propagation of non-equilibrium radiation,” USSR Comput. Math. Math. Phys. 13(3), 338–346 (1973).

    Article  MathSciNet  Google Scholar 

  16. V. Yu. Gusev, M. Yu. Kozmanov, and E. B. Rachilov, “A method of solving implicit difference equations approximating systems of radiation transport and diffusion equations,” USSR Comput. Math. Math. Phys. 24(12), 156–161 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. P. Fedotova and R. M. Shagaliev, “Finite-difference KM method for two-dimensional unsteady transport processes in the multigroup transport approximation,” Mat. Model. 3(6) (1991).

    Google Scholar 

  18. A. D. Gadzhiev, E. M. Romanova, V. N. Seleznev, and A. A. Shestakov, “TOM4-KD method for mathematical simulation of two-dimensional radiative transfer equations in the multigroup quasi-diffusion approximation,” VANT, Ser. Mat. Model. Fiz. Processov, No. 4, 48–59 (2001).

    Google Scholar 

  19. N. G. Karlykhanov, “Construction of optimal multidiagonal methods for solving radiation-transfer problems,” Comput. Math. Math. Phys. 37, 482–486 (1997).

    MathSciNet  Google Scholar 

  20. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  21. V. V. Smelov, Lectures on the Theory of Neutron Transport (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  22. G. V. Dolgoleva, “Numerical solution of the system of equations describing radiative transfer and the interaction of radiation with matter,” VANT, Ser. Mat. Model. Fiz. Processov, No. 1, 58–60 (1991).

    Google Scholar 

  23. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978; Mir, Moscow, 1982).

    Google Scholar 

  24. A. D. Gadzhiev and A. A. Shestakov, “The diagonal matrix technique for the numerical solution of radiative transfer equations in the P1 approximation using the romb scheme,” VANT, Ser. Mat. Model. Fiz. Processov, No. 1, (2006).

    Google Scholar 

  25. E. V. Groshev, “Application of Rybicki’s method to the iterative solution of radiative transfer equations using boundary conditions,” VANT, Ser. Mat. Model. Fiz. Processov, No. 1, 39–47 (2010).

    Google Scholar 

  26. A. D. Gadzhiev, V. N. Seleznev, and A. A. Shestakov, “DSn-method with artificial dissipation and DMT method of iteration acceleration for the numerical solution of two-dimensional heat transfer equations in kinetic approximation,” VANT, Ser. Mat. Model. Fiz. Processov, No. 4, 33–46 (2003).

    Google Scholar 

  27. B. P. Tikhomirov, “Difference scheme KREST for the radiative transfer equations,” VANT, Ser. Mat. Model. Fiz. Processov, No. 2, 21–36 (2009).

    Google Scholar 

  28. D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, NJ, 1989; Mir, Moscow, 1998).

    MATH  Google Scholar 

  29. K. A. Bagrinovskii and S. K. Godunov, “Finite-difference schemes for multidimensional problems,” Dokl. Akad. Nauk SSSR 115, 431–433 (1957).

    MathSciNet  Google Scholar 

  30. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  31. N. N. Yanenko and I. K. Yaushev, “On an absolutely stable scheme for integration of equations of hydrodynamics,” Tr. Mat. Inst. im. V.A. Steklova Akad. Nauk SSSR 74, 141–146 (1966).

    MATH  Google Scholar 

  32. N. Ya. Moiseev and I. Yu. Silant’eva, “Arbitrary-order difference schemes for solving linear transport equations with constant coefficients by the Godunov method with antidiffusion,” Comput. Math. Math. Phys. 48, 1210–1220 (2008).

    Article  MathSciNet  Google Scholar 

  33. O. A. Makotra, N. Ya. Moiseev, I. Yu. Silant’eva, et al., “Symmetric difference schemes of componentwise splitting and equivalent predictor-corrector scheme based on the Godunov method as applied to multidimensional gasdynamic simulation,” Comput. Math. Math. Phys. 49, 1885–1901 (2009).

    Article  MathSciNet  Google Scholar 

  34. N. Ya. Moiseev, “High-order accurate implicit running schemes,” Comput. Math. Math. Phys. 51, 862–875 (2011).

    Article  MathSciNet  Google Scholar 

  35. J. A. Fleck and J. D. Cummings, “An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport,” J. Comput. Phys. 8, 313–342 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  36. V. V. Zav’yalov, M. Yu. Kozmanov, V. N. Seleznev, et al., “Numerical results obtained for one-dimensional test radiative transfer problems,” VANT, Ser. Mat. Model. Fiz. Processov, No. 3, 26–36 (2005).

    Google Scholar 

  37. W. H. Reed, “New difference schemes for the neutron transport equation,” Nucl. Sci. Eng. 46, 309–314 (1971).

    Google Scholar 

  38. N. M. Barysheva, A. I. Zuev, N. G. Karlykhanov, et al., “An implicit scheme for the numerical modeling of physical processes in a laser plasma,” USSR Comput. Math. Math. Phys. 22(2), 156–166 (1982).

    Article  MathSciNet  Google Scholar 

  39. Yu. I. Shokin, Method of Differential Approximation (Nauka, Novosibirsk, 1979; Berlin, Springer-Verlag, 1983).

    MATH  Google Scholar 

  40. A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems of Mathematical Physics (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  41. N. N. Yanenko and G. V. Demidov, “Weak Approximation Method as a Constructive Approach to Solving the Cauchy Problem,” in Some Issues of Computational and Applied Mathematics (Nauka, Novosibirsk, 1966) [in Russian].

    Google Scholar 

  42. I. V. Fryazinov, “Economical symmetrized schemes for solving boundary value problems for a multidimensional equation of parabolic type,” USSR Comput. Math. Math. Phys. 8(2), 271–283 (1968).

    Article  Google Scholar 

  43. G. A. Baker and T. A. Oliphant, “An implicit numerical method for solving the two-dimensional heat equation,” Q. Appl. Math. 17, 361–373 (1960).

    MathSciNet  MATH  Google Scholar 

  44. S. K. Godunov and A. V. Zabrodin, “On difference schemes of the second order of accuracy for multidimensional problems,” USSR Comput. Math. Math. Phys. 2, 790–792 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5, 506–507 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Ya. Moiseev, “High-order accurate monotone difference schemes for solving gasdynamic problems by Godunov’s method with antidiffusion,” Comput. Math. Math. Phys. 51, 676–687 (2011).

    Article  MathSciNet  Google Scholar 

  47. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1968; Am. Math. Soc., Providence, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ya. Moiseev.

Additional information

Original Russian Text © N.Ya. Moiseev, 2013, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2013, Vol. 53, No. 3, pp. 442–458.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiseev, N.Y. Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method. Comput. Math. and Math. Phys. 53, 320–335 (2013). https://doi.org/10.1134/S0965542513030093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513030093

Keywords

Navigation