Skip to main content
Log in

Multiplier methods for optimization problems with Lipschitzian derivatives

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Optimization problems for which the objective function and the constraints have locally Lipschitzian derivatives but are not assumed to be twice differentiable are examined. For such problems, analyses of the local convergence and the convergence rate of the multiplier (or the augmented Lagrangian) method and the linearly constraint Lagrangian method are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Rockafellar, “Computational Schemes for Solving Large-Scale Problems in Extended Linear-Quadratic Programming,” Math. Program. 48, 447–474 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. T. Rockafellar and J. B. Wets, “Generalized Linear-Quadratic Problems of Deterministic and Stochastic Optimal Control in Discrete Time,” SIAM J. Control Optim. 28, 810–922 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Qi, “Superlinearly Convergent Approximate Newton Methods for LC1 Optimization Problems,” Math. Program. 64, 277–294 (1994).

    Article  MATH  Google Scholar 

  4. D. Klatte and K. Tammer, “On the Second Order Sufficient Conditions to Perturbed C 1, 1 Optimization Problems,” Optimization 19, 169–180 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Qi, LC 1 Functions and LC 1 Optimization Problems, Technical Report AMR 91/21 (School of Mathematics, University of New South Wales, Sydney, 1991).

    Google Scholar 

  6. A. F. Izmailov and M. V. Solodov, “The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and Its Applications to Optimality Conditions,” Math. Operat. Res. 27, 614–635 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Stein, “Lifting Mathematical Programs with Complementarity Constraints,” Math. Program. 131(1–2), 71–94 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. F. Izmailov, A. L. Pogosyan, and M. V. Solodov, “Semismooth Newton Method for the Lifted Reformulation of Mathematical Programs with Complementarity Constraints,” Comput. Optim. Appl. 51, 199–221 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. LANCELOT, http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml.

  10. ALGENCAN, http://www.ime.usp.br/~egbirgin/tango/.

  11. D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic, New York, 1982; Radio i Svyaz’, Moscow, 1987).

    MATH  Google Scholar 

  12. A. F. Izmailov and V. M. Solodov, Numerical Optimization Methods, 2nd. ed. (Fizmatlit, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  13. D. Fernández and M. V. Solodov, “Local Convergence of Exact and Inexact Augmented Lagrangian Methods under the Second-Order Sufficient Optimality Condition,” SIAM J. Optim. 22, 384–407 (2012).

    Article  MATH  Google Scholar 

  14. F. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  15. S. M. Robinson, “A Quadratically Convergent Algorithm for General Nonlinear Programming Problems,” Math. Program. 3, 145–156 (1972).

    Article  MATH  Google Scholar 

  16. B. A. Murtagh and M. A. Saunders, “A Projected Lagrangian Algorithm and Its Implementation for Sparse Nonlinear Constraints,” Math. Program. Study 16, 84–117 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. P. Friedlander and M. A. Saunders, “A Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization,” SIAM J. Optim. 15, 863–897 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. B. A. Murtagh and M. A. Saunders, MINOS 5.0 User’s Guide, Technical Report SOL 83.20 (Stanford Univ., 1983).

  19. A. F. Izmailov and M. V. Solodov, “Inexact Josephy-Newton Framework for Generalized Equations and Its Applications to Local Analysis of Newtonian Methods for Constrained Optimization,” Comput. Optim. Appl. 46, 347–368 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. M. Robinson, “Strongly Regular Generalized Equations,” Math. Oper. Res. 5, 43–62 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings (Springer-Verlag, New York, 2009).

    Book  MATH  Google Scholar 

  22. S. M. Robinson, “Newton’s Method for a Class of Nonsmooth Functions,” Set-Valued Anal. 2, 291–305 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. L. Dontchev and R. T. Rockafellar, “Newton’s Method for Generalized Equations: A Sequential Implicit Function Theorem,” Math. Program. 123, 139–159 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. H. Josephy, Newton’s Method for Generalized Equations, Technical Summary Report, No. 1965 (Mathematics Research Center, Univ. of Wisconsin, Madison, 1979).

    Google Scholar 

  25. N. H. Josephy, Quasi-Newton Methods for Generalized Equations, Technical Summary Report, No. 1966 (Mathematics Research Center, Univ. of Wisconsin, Madison, 1979).

    Google Scholar 

  26. A. F. Izmailov, Preprint Ser. D 096/2012 (IMPA, Rio de Janeiro, 2012).

    Google Scholar 

  27. A. F. Izmailov, A. S. Kurennoy, and M. V. Solodov, “The Josephy-Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization,” Set-Valued Var. Anal., 2012, DOI 10.1007/s11228-012-0218-z.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Izmailov.

Additional information

Original Russian Text © A.F. Izmailov, A.S. Kurennoy, 2012, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2012, Vol. 52, No. 12, pp. 2140–2148.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailov, A.F., Kurennoy, A.S. Multiplier methods for optimization problems with Lipschitzian derivatives. Comput. Math. and Math. Phys. 52, 1603–1611 (2012). https://doi.org/10.1134/S0965542512120081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542512120081

Keywords

Navigation