Skip to main content
Log in

Automatic step size and order control in one-step collocation methods with higher derivatives

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

On the basis of symmetric E-methods with higher derivatives having the convergence order four, six, or eight, implicit extrapolation schemes are constructed for the numerical solution of ordinary differential equations. The combined step size and order control used in these schemes implements an automatic global error control in the extrapolation E-methods, which makes it possible to solve differential problems in automatic mode up to the accuracy specified by the user (without taking into account round-off errors). The theory of adjoint and symmetric methods presented in this paper is an extension of the results that are well known for the conventional Runge-Kutta schemes to methods involving higher derivatives. Since the implicit extrapolation based on multi-stage Runge-Kutta methods can be very time consuming, special emphasis is made on the efficiency of calculations. All the theoretical conclusions of this paper are confirmed by the numerical results obtained for test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Collatz, The Numerical Treatment of Differential Equations (Springer, Berlin, 1960; Inostrannaya Literatura, Moscow, 1953).

    MATH  Google Scholar 

  2. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (John Wiley and Sons, New York-London, 1962).

    MATH  Google Scholar 

  3. H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin, 1973; Mir, Moscow, 1978).

    MATH  Google Scholar 

  4. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  5. Yu. V. Rakitskii, S. M. Ustinov, and I. G. Chernorutskii, Numerical Methods for Stiff Systems (Fizmatlit, Moscow, 1979) [in Russian].

    Google Scholar 

  6. J. M. Ortega and W. G. Poole, Jr., An Introduction to Numerical Methods for Differential Equations (Nauka, Moscow, 1986; Pilman, Marshfield, 1981).

    MATH  Google Scholar 

  7. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  8. K. Dekker and J. G. Verver, Stability of Runge—Kutta Methods for Stiff Nonlinear Differential Equations (North-Holland, Amsterdam, 1984; Mir, Moscow, 1988).

    MATH  Google Scholar 

  9. G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1989; Springer, New York, 1982).

    MATH  Google Scholar 

  10. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  11. O. B. Arushanyan and S. F. Zaletkin, Numerical Solution of Ordinary Differential Equations in FORTRAN (Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  12. E. Hairer, S. Nérsett, and G. Wanner, Solving Ordinary Differential Equations, Vol. 1: Nonstiff Problems (Springer, Berlin, 1987-1991; Mir, Moscow, 1990).

    Google Scholar 

  13. E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems (Springer, Berlin, 1987–1991; Mir, Moscow, 1999).

  14. V. I. Shalashilin and E. B. Kuznetsov, Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics (Editorial URSS, Moscow, 1999; Kluwer, Dordrecht, 2003).

    Google Scholar 

  15. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations (Springer, Berlin, 2002).

    MATH  Google Scholar 

  16. J. C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Chichester, 2003).

    Book  MATH  Google Scholar 

  17. A. Guyton, Circulatory Physiology: Cardiac Output and Its Regulation (Saunders, Philadelphia, 1963; Meditsina, Moscow, 1969).

    Google Scholar 

  18. F. Grodins, Control Theory and Biological Systems (Columbia Univ. Press, New York, 1963; Mir, Moscow, 1966).

    Google Scholar 

  19. G. I. Marchuk, Mathematical Methods in Immunology: Computational Methods and Experiments (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  20. V. Nerreter, Design of Electrical Circuits Using Personal Computers (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  21. E. Fehlberg, “Eine Methode zur Fehlerverkleinerung bein Runge-Kutta Verfahren,” Z. Angew. Math. Mech. 38, 421–426 (1958).

  22. E. Fehlberg, “New High-Order Runge-Kutta Formulas with Step Size Control for Systems of First and Second Order Differential Equations,” Z. Angew. Math. Mech. 44 (1964).

  23. K. H. Kastlunger and G. Wanner, “Runge-Kutta Processes with Multiple Nodes,” Computing 9, 9–24 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  24. K. H. Kastlunger and G. Wanner, “On Turan Type Implicit Runge-Kutta Methods,” Computing 9, 317–325 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. P. Nörsett, “One-Step Methods of Hermite Type for Numerical Integration of Stiff Systems,” BIT 14, 63–77 (1974).

    Google Scholar 

  26. G. Yu. Kulikov and A. I. Merkulov, “On One-Step Collocation Methods with Higher Derivatives for Solving Ordinary Differential Equations,” Zh. Vychisl. Mat. Mat. Fiz. 44, 1782–1807 (2004) [Comput. Math. Math. Phys. 44, 1696-1720 (2004)].

    MATH  MathSciNet  Google Scholar 

  27. G. Yu. Kulikov, A. I. Merkulov, and E. Yu. Khrustaleva, On a Family of A-Stable Collocation Methods with High Derivatives in in Proc. Comput. Sci. of the 4th Int. Conf. on Computer Science ICCS’2004, Krakow, Poland, 2006, Part II; Lect. Notes Comput. Sci. 3037, 73–80 (2004).

    MathSciNet  Google Scholar 

  28. A. N. Khovanskii, Applications of Continued Fractions and Their Applications in Approximate Analysis (Gos-tekhizdat, Moscow, 1956) [in Russian].

    Google Scholar 

  29. G. Yu. Kulikov, A. I. Merkulov, and S. K. Shindin, “Asymptotic Error Estimate for General Newton-Type Methods and Its Application to Differential Equations,” Rus. J. Numer. Anal. Math. Modeling 22, 567–590 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  30. S. M. Aul’chenko, A. F. Latypov, and Yu. V. Nikulichev, “A Method of Numerical Integration for a System of Ordinary Differential Equations with the Use of the Hermitian Interpolating Polynomials,” Zh. Vychisl. Mat. Mat. Fiz. 38, 1665–1670 (1998) [Comput. Math. Math. Phys. 38, 1595-1601 (1998)].

    MathSciNet  Google Scholar 

  31. G. Yu. Kulikov, E. Yu. Khrustaleva, and A. I. Merkulov, “Symmetric Runge-Kutta Methods with Higher Derivatives and Quadratic Extrapolation,” in Proc. Comput. Sci. of the 6th Int. Conf. on Computer Science ICCS’2006, Reading, UK, 2006, Part I; Lect. Notes Comput. Sci. 3991, 117–123 (2006).

    Google Scholar 

  32. G. Yu. Kulikov and E. Yu. Khrustaleva, “Automatic Step Size and Order Control in Implicit One-Step Extrapolation Methods,” Zh. Vychisl. Mat. Mat. Fiz. 48, 1580–1606 (2008) [Comput. Math. Math. Phys. 48, 1545- 1569 (2008)].

    MathSciNet  Google Scholar 

  33. R. Bulirsch and J. Stoer, “Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods,” Numer. Math. 8, 1–13 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Deuflhard, “Order and Stepsize Control in Extrapolation Methods,” Numer. Math. 41, 399–422 (1983).

  35. P. Deuflhard, “Recent Progress in Extrapolation Methods for Ordinary Differential Equations,” SIAM Rev. 27, 505–535 (1985).

  36. W. B. Gragg, “Repeated Extrapolation to the Limit in the Numerical Solution of Ordinary Differential Equations,” Thesis. Univ. of California (1964).

  37. W. B. Gragg, “On Extrapolation Algorithms for Ordinary Initial Value Problems,” SIAM J. Numer. Anal. 2 (1965).

  38. G. Yu. Kulikov, Doctoral Dissertation in Mathematics and Physics (Ul’yanovskii gos. un-t, Ul’yanovsk, 2002).

    Google Scholar 

  39. G. Yu. Kulikov, “On Implicit Extrapolation Methods for Ordinary Differential Equations,” Rus. J. Numer. Anal. Maht. Modeling 17, 41–69 (2002).

    MathSciNet  Google Scholar 

  40. G. Yu. Kulikov, “On Implicit Extrapolation Techniques for Systems of Differential-Algebraic Equations,” Vestn. Mos. Univ., Ser. 1, Mat., Mekhan., No. 5, 3–7 (2002).

    MathSciNet  Google Scholar 

  41. G. Yu. Kulikov, “One-Step Methods and Implicit Extrapolation Technique for Index 1 Differential-Algebraic Systems,” Rus. J. Numer. Anal. Math. Modelling 19, 527–553 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  42. G. Yu. Kulikov and E. Yu. Khrustaleva, “Automatic Step Size and Order Control in Explicit One-Step Extrapolation Methods,” Zh. Vychisl. Mat. Mat. Fiz. 48, 1392–1405 (2008) [Comput. Math. Math. Phys. 48, 1313- 1326 (2008)].

    MATH  MathSciNet  Google Scholar 

  43. G. Yu. Kulikov, “A Theory of Symmetric One-Step Methods for Differential-Algebraic Equations,” Rus. J. Numer. Anal. Math. Modelling 12, 501–523 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  44. G. Yu. Kulikov, “Revision of the Theory of Symmetric One-Step Methods for Ordinary Differential Equations,” Korean J. Comput. Appl. Math. 5 (3), 579–600 (1998).

    MATH  MathSciNet  Google Scholar 

  45. G. Yu. Kulikov, “Ob ustoichivosti simmetrichnykh formul Runge-Kutty,” Dokl. Akad. Nauk 389, 164–168 (2003) [Dokl. 67, 184-188 (2003)].

    MathSciNet  Google Scholar 

  46. G. Yu. Kulikov, “Symmetric Runge-Kutta Methods and Their Stability,” Rus. J. Numer. Anal. Math. Modelling 18, 13–41 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  47. G. Wanner, “Runge-Methods with Expansion in Even Powers of h,” Computing 11, 81–85 (1973).

    Google Scholar 

  48. G. Yu. Kulikov, “A Method of Error Analysis for Runge-Kutta Methods,” Zh. Vychisl. Mat. Mat. Fiz. 38, 1651–1653 (1998) [Comput. Math. Math. Phys. 38, 1580-1582 (1998)].

    MathSciNet  Google Scholar 

  49. G. Yu. Kulikov, “A Local-Global Version of a Stepsize Control for Runge-Kutta Methods,” Korean J. Comput. Appl. Math. 7, 289–318 (2000).

    MATH  MathSciNet  Google Scholar 

  50. G. Yu. Kulikov, “On Using Newton-Type Iterative Methods for Solving Systems of Differential-Algebraic Equations of Index 1,” Zh. Vychisl. Mat. Mat. Fiz. 41, 1180–1189 (2001) [Comput. Math. Math. Phys. 41, 1122-1131 (2001)].

    MathSciNet  Google Scholar 

  51. G. Yu. Kulikov and S. K. Shindin, “On a Family of Cheap Symmetric One-Step Methods of Order Four,” in Proc. Comput. Sci. of the 6th Int. Conf. on Computer Science ICCS’2006, Reading, UK, 2006, Part I; Lect. Notes Comput. Sci. 3991, 781–785 (2006).

    Google Scholar 

  52. G. Yu. Kulikov and S. K. Shindin, “Numerical Tests with Gauss-Type Nested Implicit Runge-Kutta Formulas,” in Proc. of the 7th Int. Conf. on Computer Science ICCS’2007, Bejing, China, 2007, Part I; Lect. Notes Com-put. Sci. 4487, 136–143 (2007).

    Google Scholar 

  53. G. Yu. Kulikov and S. K. Shindin, “Adaptive Nested Implicit Runge-Kutta Formulas of Gauss-Type,” Appl. Numer. Math. 59, 707–722 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  54. G. Yu. Kulikov, “Automatic Error Control in the Gauss2-Type Nested Implicit Runge-Kutta Formula of Order 6,” Rus. J. Numer. Anal. Math. Modelling 24 (2), 123–144 (2009).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Kulikov.

Additional information

Original Russian Text © G.Yu. Kulikov, E.Yu. Khrustaleva, 2010, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 6, pp. 1060–1077.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikov, G.Y., Khrustaleva, E.Y. Automatic step size and order control in one-step collocation methods with higher derivatives. Comput. Math. and Math. Phys. 50, 1006–1023 (2010). https://doi.org/10.1134/S0965542510060084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542510060084

Navigation