Skip to main content
Log in

Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Taylor, “Stability of a Viscous Liquid Contained between Two Rotating Cylinders,” Philos. Trans. R. Soc. London, Ser. A 223, 289–343 (1923).

    Article  Google Scholar 

  2. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Fluid Mechanics (Fizmatgiz, Moscow, 1963), Part 2 [in Russian].

    Google Scholar 

  3. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, “Formation of Large-Scale Structures in the Gap between Rotating Cylinders: The Rayleigh-Zeldovich Problem,” Zh. Vychisl. Mat. Mat. Fiz. 42, 1727–1737 (2002) [Comput. Math. Math. Phys. 42, 1661–1670 (2002)].

    MATH  MathSciNet  Google Scholar 

  4. Liang Sun, “General Stability Criterion for Inviscid Parallel Flow,” Eur. J. Phys. 28, 889–895 (2007).

    Article  MATH  Google Scholar 

  5. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).

    Google Scholar 

  7. F. R. S. Rayleigh, “On the Stability or Instability of Certain Fluid Motions,” Proc. London Soc. S1 11, 57–72 (1880).

    Article  Google Scholar 

  8. F. R. S. Rayleigh, “On the Dynamics of Revolving Fluids,” Proc. London Soc. A 93, 148–154 (1916).

    Article  Google Scholar 

  9. O. Reynolds, “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion,” Philos. Trans. R. Soc. London Ser. A 186, 123–164 (1895).

    Article  Google Scholar 

  10. C.-C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 1955; Inostrannaya Literatura, Moscow, 1958).

    MATH  Google Scholar 

  11. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon & Breach, New York, 1969; Nauka, Moscow, 1970).

    MATH  Google Scholar 

  12. V. I. Yudovich, “On the Stability of Steady Viscous Incompressible Flows,” Dokl. Akad. Nauk SSSR 5, 1037–1040 (1965).

    Google Scholar 

  13. Yu. P. Ivanilov and G. N. Yakovlev, “On Bifurcation of the Flow in the Gap between Rotating Cylinders,” Prikl. Mat. Mekh. 30, 910–916 (1966).

    MATH  Google Scholar 

  14. D. Ruelle and F. Takens, “On the Nature of Turbulence,” Comm. Math. Phys. 20, 167–192 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. D. Joseph, Stability of Fluid Motions (Springer-Verlag, New York, 1976; Mir, Moscow, 1981).

    Google Scholar 

  16. D. N. Zubarev, V. G. Morozov, and O. V. Troshkin, “Bifurcation Model of Turbulent Flow in a Channel,” Dokl. Akad. Nauk SSSR 290, 313–317 (1986).

    MathSciNet  Google Scholar 

  17. E. I. Oparina and O. V. Troshkin, “Stability of Kolmogorov Flow in a Channel with Rigid Walls,” Dokl. Akad. Nauk 398, 487–491 (2004) [Dokl. Phys. 49, 583–587 (2004)].

    MathSciNet  Google Scholar 

  18. A. A. Friedman, Experience in Compressible Fluid Dynamics (ONTI, Moscow, 1934) [in Russian].

    Google Scholar 

  19. H. L. F. Helmholtz, Uber discontinuierlich Flussigkeitsbewegungen, Monatsberichte konigl (Akad. Wiss., Berlin, 1868).

    Google Scholar 

  20. W. Kelvin (Thomson), Mathematical and Physical Papers (Cambridge Univ. Press, Cambridge, 1910), Vol. 4.

    MATH  Google Scholar 

  21. R. D. Richtmyer, “Taylor Instability in a Shock Acceleration of Compressible Fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960).

    Article  MathSciNet  Google Scholar 

  22. E. E. Meshkov, “Instability of a Gas Interface Accelerated by a Shock Wave,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza 5, 151–158 (1969).

    Google Scholar 

  23. G. I. I. Taylor, The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes I, Proc. R. Soc. London Ser. A 201, 192–196 (1950).

    Article  MATH  Google Scholar 

  24. H. Bénard, “Les tourbillons cellulaires dans une nappe liquide,” Rev. Generale Sci. Pures Appl. 11, 1261–1309 (1900).

    Google Scholar 

  25. H. Bénard, “Les tourbillons cellulaires une nappe liquide transportant de la chaleur par convection en régime permanent,” Ann. Chim. Phys. 23, 62–144 (1901).

    Google Scholar 

  26. V. Arnold, “Sur la topologie des écoulement stationnaires des fluides parfaites,” C. R. Acad. Sci. 261(1), 17–20 (1965).

    Google Scholar 

  27. V. Anrold, “Sur la géométrie différentielle des groupes de lie de dimension infini et ses applications a hydrodynamique des fluides parfaits,” Ann. Inst. Fourier 16, 319–361 (1966).

    Google Scholar 

  28. L. D. Meshalkin and Ya. G. Sinai, “Stability Analysis of the Stationary Solution to a System of Equations Governing Viscous Incompressible Planar Flows,” Prikl. Mat. Mekh. 25, 1140–1143 (1961).

    Google Scholar 

  29. O. V. Troshkin, Nontraditional Methods in Mathematical Hydrodynamics (Am. Math. Soc., Providence, RI, 1995).

    MATH  Google Scholar 

  30. O. V. Troshkin, “Topological Analysis of Fluid Flow Structure,” Usp. Mat. Nauk. 43:4(262), 129–158 (1988).

    MathSciNet  Google Scholar 

  31. O. M. Belotserkovskii, Karman’s Lecture (von Karman Institute for Fluid Dynamics, 1978).

  32. O. M. Belotserkovskii, “Direct Numerical Simulation of Free Developed Turbulence,” Zh. Vychisl. Mat. Mat. Fiz. 25, 1857–1882 (1985).

    Google Scholar 

  33. O. M. Belotserkovskii, Turbulence and Instabilities (MZpress, Moscow, 2003).

    Google Scholar 

  34. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (CISP CBI 6AZ, Cambridge, 2005).

    Google Scholar 

  35. O. Belotserkovskii, S. Fortova, A. Oparin, et al., “The Turbulence in Free Shear Flows and in Accretion Disks,” Investigation of Hydrodynamic Instability and Turbulence in Fundamental and Technological Problems by Means of Mathematical Modeling with Supercomputers (Nagoya Univ., Nagoya, Japan, 2005), pp. 229–241.

    Google Scholar 

  36. G. Ranque, “Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot Air and Cold Air,” J. Phys. Radium 4, 1125–1130 (1933).

    Google Scholar 

  37. R. Hilsch, “The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process,” Rev. Sci. Instrum. 18, 108–113 (1947).

    Article  Google Scholar 

  38. P. A. M. Dirac, Collected Works (Fizmatlit, Moscow, 2005), Vol. 4 [in Russian].

    Google Scholar 

  39. E. M. Aisen, V. D. Borisevich, and E. V. Levin, “Simulation of Flow and diffusion in Gas Centrifuge for Separation of Multicomponent Isotopic Mixtures,” Mat. Model. 9(4), 27–38 (1997).

    MATH  MathSciNet  Google Scholar 

  40. P. G. Saffman and G. I. Taylor, “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid,” Proc. R. Soc. London Ser. A 245, 312–329 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  41. M. S. Belotserkovskaya, Candidate’s Dissertation in Mathematics and Physics (MGU, Moscow, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Belotserkovskii.

Additional information

Original Russian Text © O.M. Belotserkovskii, V.V. Denisenko, A.V. Konyukhov, A.M. Oparin, O.V. Troshkin, V.M. Chechetkin, 2009, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2009, Vol. 49, No. 4, pp. 754–768.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belotserkovskii, O.M., Denisenko, V.V., Konyukhov, A.V. et al. Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case. Comput. Math. and Math. Phys. 49, 729–742 (2009). https://doi.org/10.1134/S0965542509040162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542509040162

Keywords

Navigation