Skip to main content
Log in

Buffer phenomenon in systems with one and a half degrees of freedom

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The buffer phenomenon is established for some classical mechanics problems that are described by pendulum-type equations with time-periodic small additive terms. This phenomenon is as follows: the systems under consideration can have an arbitrary fixed number of stable periodic modes if the system parameters are properly chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vitt, “Distributed Self-Oscillating Systems,” Zh. Tekh. Fiz. 4(1), 144–157 (1934).

    Google Scholar 

  2. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “Asymptotic Methods in the Analysis of Periodic Solutions to Nonlinear Hyperbolic Equations,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 222 (1998).

  3. A. Yu. Kolesov, N. Kh. Rozov, and V. G. Sushko, “Specific Features of Self-Oscillating Processes in Resonance Hyperbolic Systems,” Fundament. Prikl. Mat. 5(2), 437–473 (1999).

    MATH  MathSciNet  Google Scholar 

  4. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “The Buffer Phenomenon in Hyperbolic Resonance Systems of Equations,” Usp. Mat. Nauk 55(2), 95–120 (2000).

    MATH  MathSciNet  Google Scholar 

  5. A. Yu. Kolesov and N. Kh. Rozov, “The Buffer Phenomenon in an RCLG Self-Excited Oscillator: A Theoretical Analysis and Experimental Results,” Tr. Mat. Inst., Ross. Akad. Nauk 233, 153–207 (2001).

    MATH  MathSciNet  Google Scholar 

  6. A. Yu. Kolesov and N. Kh. Rozov, “The Buffer Phenomenon in Distributed Mechanical Systems,” Prikl. Mat. Mekh. 65(2), 183–198 (2001).

    MATH  MathSciNet  Google Scholar 

  7. E. F. Mishchenko, V. A. Sadovnichii, A. Yu. Kolesov, and N. Kh. Rozov, Autowave Processes in Nonlinear Media with Diffusion (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  8. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics: From Pendulum to Turbulence and Chaos (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. G. M. Zaslavskii, Physics of Chaos in Hamiltonian Systems (Institute of Computer Studies, Izhevsk, 2004) [in Russian].

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Mechanics (Fizmatlit, Moscow, 1988; Pergamon, New York, 1976).

    Google Scholar 

  11. E. T. Whittaker and G. N. Watson, A Course of Modem Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions (University Press, Cambridge, 1944; Fizmatgiz, Moscow, 1963).

    Google Scholar 

  12. V. V. Kozlov, “Separatrix Splitting and the Formation of Isolated Periodic Solutions in Hamiltonian Systems with One and a Half Degrees of Freedom,” Usp. Mat. Nauk 41(5), 177–178 (1986).

    MATH  Google Scholar 

  13. V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics (Udmurtskii Gos. Univ., Izhevsk, 1995) [in Russian].

    MATH  Google Scholar 

  14. A. D. Morozov, Global Analysis in the Theory of Nonlinear Vibrations (Nizhegorodskii Gos. Univ., Nizhni Novgorod, 1995) [in Russian].

    Google Scholar 

  15. H. Poincaré, Selected Works, Vol I: New Methods of Celestial Mechanics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  16. http://tracer3.narod.ru

  17. N. K. Gavrilov and L. P. Shil’nikov, “On Three-Dimensional Dynamical Systems Close to a System with a Noncoarse Homoclinic Curve: I,” Mat. Sb. 88(4), 475–492 (1972).

    MATH  MathSciNet  Google Scholar 

  18. N. K. Gavrilov and L. P. Shil’nikov, “On Three-Dimensional Dynamical Systems Close to a System with a Noncoarse Homoclinic Curve: II,” Mat. Sb. 90(1), 139–157 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Guckenheimer and P. Holms, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983; Institut Komp’yuternykh Issledovanii, Izhevsk, 2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.D. Glyzin, A.Yu. Kolesov, N.Kh. Rozov, 2006, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2006, Vol. 46, No. 9, pp. 1582–1593.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glyzin, S.D., Kolesov, A.Y. & Rozov, N.K. Buffer phenomenon in systems with one and a half degrees of freedom. Comput. Math. and Math. Phys. 46, 1503–1514 (2006). https://doi.org/10.1134/S0965542506090041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542506090041

Keywords

Navigation