Skip to main content
Log in

Calculating thermal radiation of a vibrational nonequilibrium gas flow using the method of k-distribution

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The method has been developed to calculate infrared radiation of vibrational nonequilibrium gas based on k-distribution. A comparison of the data on the calculated nonequilibrium radiation with results of other authors and with experimental data has shown satisfactory agreement. It is shown that the results of calculation of radiation intensity using nonequilibrium and equilibrium methods significantly differ from each other. The discrepancy increases with increasing height (decreasing pressure) and can exceed an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Molchanov and P.V Nikitin, Narrowband database for calculating the radiation of combustion products by using k-distribution, Thermal Processes in Engineering, 2014, No. 10, P. 448–455.

    Google Scholar 

  2. M.F. Modest, Radiative Heat Transfer, 2nd Ed., Academic Press, New York, 2003.

    MATH  Google Scholar 

  3. H. Zhang and M.F. Modest, Multi-group full-spectrum k-distribution database for water vapor mixtures in radiative transfer calculations, Int. J. Heat Mass Transfer, 2003, Vol. 46, P. 3593–3603.

    Article  MATH  Google Scholar 

  4. A. Wang and M.F. Modest, High-Accuracy, Compact database of narrow-band k-distributions for water vapor and carbon dioxide, J. Quantitative Spectroscopy and Radiative Transfer, 2005, Vol. 93, P. 245–261.

    Article  ADS  Google Scholar 

  5. T. Ozawa, M.B. Garrison, and D.A. Levin, Accurate molecular and soot infrared radiation model for hightemperature flows, J. Thermophysics and Heat Transfer, 2007, Vol. 21, No. 1, P. 19–27.

    Article  Google Scholar 

  6. S.A. Losev, Gasdynamic Laser, Springer-Verlag, Berlin Heidelberg, 1981.

    Book  Google Scholar 

  7. L.C. Scalabrin, Numerical simulation of weakly ionized hypersonic flow over reentry capsules, PhD Dissertation (Aerospace Engng), University of Michigan, 2007.

    Google Scholar 

  8. A.M. Molchanov and L.V. Bykov, Three-equation k-ε-Vn turbulence model for high-speed flows, AIAA Paper, 2013, No. 2013−3181.

    Google Scholar 

  9. M.O. Connaire, H.J. Curran, J.M. Simmie, W.J. Pitz, and C.K. Westbrook, A comprehensive modeling study of hydrogen oxidation, Int. J. Chemical Kinetics, 2004, Vol. 36, P. 603–622.

    Article  Google Scholar 

  10. A.M. Molchanov, Numerical simulation of supersonic chemically reacting turbulent jets, AIAA Paper, 2011, No. 2011−3211.

    Google Scholar 

  11. M.R. Denison, J.J. Lamb, W.D. Bjorndahl, E.Y. Wong, and P.D. Lohn, Solid rocket exhaust in the stratosphere: plume diffusion and chemical reactions, J. Spacecraft and Rockets, 1994, Vol. 31, P. 435–442.

    Article  ADS  Google Scholar 

  12. J.A. Blauer and G.R. Nickerson, A survey of vibrational relaxation rate data for processes important to CO2-N2-H2O infrared plume radiation, Ultrasystems, Incorporated, Technical Reports, Rept Number 0455177, 1973.

    Google Scholar 

  13. O.V. Achasov, N.N. Kudryavtcev, S.S. Novikov, R.I. Soloukhin, and N.A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers, Minsk, Nauka i Tekhnika, 1985.

    Google Scholar 

  14. E.I. Vitkin, V.G. Karelin, A.A. Kirillov, A.S. Suprun, and Ju.V. Khadyka, A physico-mathematical model of rocket exhaust plumes, Int. J. Heat Mass Transfer, 1997, Vol. 40, No. 5, P. 1227–1241.

    Article  MATH  Google Scholar 

  15. S.A. Losev, B.V. Potapkin, S.O. Macheret, and G.G. Chernyi, Physical and chemical processes in gas dynamics: physical and chemical kinetics and thermodynamics of gases and plasmas, Vol. II, AIAA, 2004.

    Google Scholar 

  16. N.N. Kudryavtsev and S.S. Novikov, Theoretical and experimental investigations of I.R. radiation transfer in vibrationally nonequilibrated molecular gas containing CO2 and CO, Int. J. Heat Mass Transfer, 1982, Vol. 25, No. 10, P. 1541–1558.

    Article  ADS  Google Scholar 

  17. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1, Read Books Ltd, 2013.

    Google Scholar 

  18. L.S. Rothman, I.E. Gordon, Y. Babikov et al., The HITRAN 2012 molecular spectroscopic database, J. Quantitative Spectroscopy and Radiative Transfer, 2013, Vol. 130, P. 4–50.

    Article  ADS  Google Scholar 

  19. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, and J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database, J. Quantitative Spectroscopy and Radiative Transfer, 2010, Vol. 111, No. 15, P. 2139–2150.

    Article  ADS  Google Scholar 

  20. S.A. Tashkun, V.I. Perevalov, J-L. Teffo, A.D. Bykov, and N.N. Lavrentieva, CDSD-1000, the hightemperature carbon dioxide spectroscopic databank, J. Quantitative Spectroscopy and Radiative Transfer, 2003, Vol. 82, Iss. 1–4, P. 165–196.

    Article  ADS  Google Scholar 

  21. A. Bansal, M. Modest, and D. Levin, Application of k-distribution method to molecular radiation in hypersonic nonequilibrium flows, AIAA Paper, 2009, No. 2009−3922.

    Google Scholar 

  22. E.I. Vitkin, S.L. Shuralyov, and V.V. Tamanovich, Radiation transfer in vibrationally nonequilibrium gases, Int. J. Heat Mass Transfer, 1995, Vol. 38, No. 1, P. 163–173.

    Article  MATH  Google Scholar 

  23. G. Avital, Y. Cohen, L. Gamss, Y. Kanelbaum, J. Macales, B. Trieman, S. Yaniv, M. Lev, J. Stricker, and A. Sternlieb, Experimental and computational study of infrared emission from underexpanded rocket exhaust plumes, J. Thermophysics and Heat Transfer, 2001, Vol. 15, No. 4, P. 377–383.

    Article  Google Scholar 

  24. E.I. Viykin and A.A. Kirillov, Radiation transfer in moving volumes of nonequilibrium molecular gases, Heat Transfer Research, 2003, Vol. 34, No. 1&2, P. 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Bykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchanov, A.M., Bykov, L.V. & Yanyshev, D.S. Calculating thermal radiation of a vibrational nonequilibrium gas flow using the method of k-distribution. Thermophys. Aeromech. 24, 399–419 (2017). https://doi.org/10.1134/S086986431703009X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086986431703009X

Key words

Navigation