Skip to main content
Log in

Laminar incompressible viscous flow past a cylinder performing rotary oscillations

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The numerical simulation of the laminar viscous flow past a cylinder performing rotary oscillations around its axis is carried out. The Navier–Stokes equations are solved by finite volume method using the program package OpenFOAM. The values of the amplitude and frequency of forced oscillations are found, at which the maximum reduction of the drag coefficient of the cylinder is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Isaev, P.A. Baranov, A.G. Sudakov, and V.B. Kharchenko, Numerical analysis of the influence of angle of attack on turbulent flow around a thick Goettingen airfoil with vortex cells, Thermophysics and Aeromechanics, 2007, Vol. 14, No. 2, P. 169–186.

    Article  ADS  Google Scholar 

  2. V.I. Kornilov, A.V. Boiko, and I.N. Kavun, Control of turbulent boundary layer through air blowing due to external- flow resources, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 4, P. 413–426.

    Article  ADS  Google Scholar 

  3. T.V. Malakhova, Heat transfer of an oscillating cylinder in a viscous incompressible fluid flow, Thermophysics and Aeromechanics, 2012, Vol. 19, No. 1, P. 69–76.

    Article  ADS  Google Scholar 

  4. M.R.H. Nobari and H. Naderan, A numerical study of flow past a cylinder with cross flow and inline oscillation, Comp. Fluids, 2006, Vol. 35, P. 393–415.

    Article  MATH  Google Scholar 

  5. C.H.K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 1996, Vol. 28, P. 477–539.

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Taneda, Visual observations of the flow past a circular cylinder performing a rotary oscillation, J. Phys. Soc. Japan, 1978, Vol. 45, P. 1038–1043.

    Article  ADS  Google Scholar 

  7. J. D’Adamo, R. Godoy-Diana, and J.E. Wesfreid, Spatio-temporal spectral analysis of a forced cylinder wake, Phys. Review E, 2011, Vol. 84: 056308.

    Article  ADS  Google Scholar 

  8. B. Thiria, S. Goujon-Durand, and J.E. Wesfreid, The wake of a cylinder performing rotary oscillations, J. Fluid Mech., 2006, Vol. 560, P. 123–147.

    Article  ADS  MATH  Google Scholar 

  9. S.J. Baek and H.J. Sung, Numerical simulation of the flow behind a rotary oscillating circular cylinder, Phys. Fluids, 1998, Vol. 10, No. 4, P. 869–876.

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Bergmann and L. Cordier, Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models, J. Comput. Phys., 2008, Vol. 227, P. 7813–7840.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. P.T. Tokumaru and P.E. Dimotakis, Rotary oscillation control of a cylinder wake, J. Fluid Mech., 1991, Vol. 224, P. 77–90.

    Article  ADS  Google Scholar 

  12. S.V. Guvernyuk, G.Ya. Dynnikova, Ya.A. Dynnikov, and T.V. Malakhova, Stabilization of the wake behind a circular cylinder that performs high-frequency angular oscillations, Doklady Phys., 2010, Vol. 55, No. 5, P. 228–232.

    Article  ADS  Google Scholar 

  13. R.I. Issa, Solution of implicitly discretized fluid flow equations by operator splitting, J. Comput. Phys., 1986, Vol. 62, P. 40–65.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R.D. Henderson, Nonlinear dynamics and pattern formation in turbulent wake transition, J. Fluid Mech., 1997, Vol. 352, P. 65–112.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Active control and drag optimization for flow past a circular cylinder I: Oscillatory cylinder, J. Comput. Phys., 2000, Vol. 163, Nо. 1, P. 83–117.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. C. Homescu, I.M. Navon, and Z. Li, Suppression of vortex shedding for flow around a circular cylinder using optimal control, Int. J. Numer. Meth. Fluids, 2002, Vol. 38, P. 43–69.

    Article  MATH  Google Scholar 

  17. M. Bergmann, L. Cordier, and J.-P. Brancher, Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Phys. Fluids, 2005, Vol. 17, P. 097101-1−097101-21.

    Article  MATH  Google Scholar 

  18. E.R.C. Góis and L.F. Souza, An eulerian immersed boundary method for flow simulations over stationary and moving rigid bodies, J. Braz. Soc. Mech. Sci. & Eng. Special Issue, 2010, Vol. 32, No. 5, P. 477–484.

    Article  Google Scholar 

  19. S. Mittal and B. Kumar, Flow past a rotating cylinder, J. Fluid Mech., 2003, Vol. 476, P. 303–334.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A.B. Mazo and I.V. Morenko, Numerical simulation of a viscous separation flow around a rotating circular cylinder, J. Engng Phys. Thermophys., 2006, Vol. 79, No. 3, P. 496–502.

    Article  ADS  Google Scholar 

  21. I.V. Morenko and V.L. Fedyaev, Laminar nonisothermal flow of a viscous fluid with solid particles past a rotating circular cylinder, J. Engng Phys. Thermophys., 2014, Vol. 87, No. 3, P. 566–572.

    Article  ADS  Google Scholar 

  22. E.I. Kalinin and A.B. Mazo, Steady and periodic regimes of laminar flow around the rotating cylinder, TsAGI Sci. J., 2011, Vol. 42, No. 5, P. 637–653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Morenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morenko, I.V. Laminar incompressible viscous flow past a cylinder performing rotary oscillations. Thermophys. Aeromech. 24, 355–360 (2017). https://doi.org/10.1134/S0869864317030040

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864317030040

Key words

Navigation