Skip to main content
Log in

Numerical Study of a Rotationally Oscillating Cylinder at Low Reynolds Numbers

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A numerical study on the rotary oscillating cylinder subjected to a free stream has been conducted. Two-dimensional direct numerical simulations have been performed using the spectral/hp element method implemented in the Nektar++ source code. The numerical simulations have been conducted at low values of the Reynolds number of 200. This paper focuses on three characteristics of flow: the hydrodynamic forces exerted on the cylinder, the wake patterns behind the cylinder, and the lock on phenomenon. The numerical simulations on the rotary oscillating cylinder have been performed over the extensive range of non-dimensional forcing frequency, from 0.2 to 5 and two different values of the cylinder oscillation amplitude equal to 2π/3 and 5π/3. It was observed that increase in the oscillation amplitude greatly influences the wake pattern and the lock on phenomenon. It was found that a more than double increase in the cylinder oscillation amplitude produces a significant increase in the maximum mean drag and the fluctuating lift. The influence of the forcing frequency and oscillation amplitude on the drag and lift has been quantified. Furthermore, the effect of the forcing frequency and oscillation amplitude on the cylinder wake has been thoroughly analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Choi, H., Jeon, W.P., and Kim, J., Control of flow over a bluff body, Annu. Rev. Fluid Mech., 2008, vol. 40, no. 2, pp. 113–139.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Du, L. and Dalton, C., LES calculation for uniform flow past a rotationally oscillating cylinder, J. Fluids Struct., 2013, vol. 42, pp. 40–54.

    Article  ADS  Google Scholar 

  3. Blevins, R.D., Flow-Induced Vibration, New York: Van Nostrand Reinhold, 1990.

    MATH  Google Scholar 

  4. Tokumaru, P.T. and Dimotakis, P.E., Rotary oscillation control of a cylinder wake, J. Fluid Mech., 1991, vol. 224, pp. 77–90.

    Article  ADS  Google Scholar 

  5. Shiels, D. and Leonard, A., Investigation of a drag reduction on a circular cylinder in rotary oscillation, J. Fluid Mech., 2001, vol. 431, pp. 297–322.

    Article  MATH  ADS  Google Scholar 

  6. Cheng, M., Chew, Y.T., and Luo, S.C., Numerical investigation of a rotationally oscillating cylinder in mean flow, J. Fluids Struct., 2001, vol. 15, no. 7, pp. 981–1007.

    Article  ADS  Google Scholar 

  7. Guvernyuk, S.V., Dynnikova, G.Y., Dynnikov, Y.A., and Malakhova, T.V., Stabilization of the wake behind a circular cylinder that performs high-frequency angular oscillations, Dokl. Phys., 2010, vol. 55, no. 5, pp. 228–232.

    Article  ADS  Google Scholar 

  8. Thiria, B., Goujon-Durand, S., and Wesfreid, J.E., The wake of a cylinder performing rotary oscillations, J. Fluid Mech., 2006, vol. 560, pp. 123.

    Article  MATH  ADS  Google Scholar 

  9. Kumar, S., Lopez, C., Probst, O., Francisco, G., Askari, D., and Yang, Y., Flow past a rotationally oscillating cylinder, J. Fluid Mech., 2013, vol. 735, pp. 307–346.

    Article  MATH  ADS  Google Scholar 

  10. Sellappan, P. and Pottebaum, T., Wake modes of rotationally oscillating cylinders at Re=150, J. Fluids Struct., 2014, vol. 46, pp. 29–41.

    Article  ADS  Google Scholar 

  11. Kumar, S., Navrose, N., and Mittal, S., Lock-in in forced vibration of a circular cylinder, Phys. Fluids, 2016, vol. 28, no. 11, p. 113605.

  12. Ping, H., Zhu, H., Zhang, K., Wang, R., Zhou, D., Bao, Y., and Han, Z., Wake dynamics behind a rotary oscillating cylinder analyzed with proper orthogonal decomposition, Ocean Eng., 2020, vol. 218, p. 108185.

  13. Ozalp, C., Soyler, M., Polat, C., Saydam, D., and Yaniktepe, B., An experimental investigation of a rotationally oscillating cylinder, J. Wind Eng. Ind. Aerodyn., 2021, vol. 214, p. 104679.

  14. Karniadakis, G. and Sherwin, S., Spectral/HP Element Methods for Computational Fluid Dynamics, Oxford: Oxford Univ. Press, 2013.

    MATH  Google Scholar 

  15. Xu, H., Cantwell, C.D., Monteserin, C., Eskilsson, C., Engsig-Karup, A.P., and Sherwin, S.J., Spectral/hp element methods: Recent developments, applications, and perspectives, J. Hydrodyn., 2018, vol. 30, no. 1, pp. 1–22.

    Article  ADS  Google Scholar 

  16. De Frutos, J. and Novo, J., A spectral element method for the Navier–Stokes equations with improved accuracy, SIAM J. Numer. Anal., 2000, vol. 38, no. 3, pp. 799–819.

    Article  MathSciNet  MATH  Google Scholar 

  17. Karniadakis, G.E., Israeli, M., and Orszag, S.A., High-order splitting methods for the incompressible Navier–Stokes equations, J. Comput. Phys., 1991, vol. 97, no. 2, pp. 414–443.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Guermond, J.L. and Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 2003, vol. 41, no. 1, pp. 112–134.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, M., Liu, G., and Lam, K., Numerical simulation of flow past a rotationally oscillating cylinder, Comput. Fluids, 2001, vol. 30, no. 3, pp. 365–392.

    Article  MATH  Google Scholar 

  20. Protas, B. and Wesfreid, J.E., Drag force in the open-loop control of the cylinder wake in the laminar regime, Phys. Fluids, 2002, vol. 14, no. 2, pp. 810–826.

    Article  MATH  ADS  Google Scholar 

  21. Mittal, H., Al-Mdallal, Q.M., and Ray, R.K., Locked-on vortex shedding modes from a rotationally oscillating circular cylinder, Ocean Eng., 2017, vol. 146, pp. 324–338.

    Article  Google Scholar 

  22. Ganta, N., Mahato, B., and Bhumkar, Y.G., Analysis of sound generation by flow past a circular cylinder performing rotary oscillations using direct simulation approach, Phys. Fluids, 2019, vol. 31, no. 2, p. 026104.

  23. Williamson, C. and Roshko, A., Vortex formation in the wake of an oscillating cylinder, J. Fluids Struct., 1988, vol. 2, no. 4, pp. 355–381.

    Article  ADS  Google Scholar 

  24. Leontini, J.S., Lo Jacono, D., and Thompson, M.C., Wake states and frequency selection of a streamwise oscillating cylinder, J. Fluid Mech., 2013, vol. 730, pp. 162–192.

    Article  MATH  ADS  Google Scholar 

  25. Du, L. and Sun, X., Suppression of vortex-induced vibration using the rotary oscillation of a cylinder, Phys. Fluids, 2015, vol. 27, no. 2, p. 023603.

  26. Leontini, J.S., Stewart, B.E., Thompson, M.C., and Hourigan, K., Wake state and energy transitions of an oscillating cylinder at low Reynolds number, Phys. Fluids, 2006, vol. 18, no. 6, p. 067101.

  27. Bhumkar, Y. and Sengupta, T., Drag reduction by rotary oscillation for flow past a circular cylinder, Int. J. Emerging Multidiscip. Fluid Sci., 2009, vol. 1, no. 4, pp. 269–298.

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Grant nos. 52101322 and 52122110), the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (project no. 19CG10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Mikhailov, Y. Bao, Z. L. Han or H. B. Zhu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, M.S., Bao, Y., Han, Z.L. et al. Numerical Study of a Rotationally Oscillating Cylinder at Low Reynolds Numbers. Fluid Dyn 58, 438–449 (2023). https://doi.org/10.1134/S0015462822601930

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601930

Keywords:

Navigation