Skip to main content
Log in

Solid particle spreading in gas-dispersed confined swirling flow. Eulerian and Lagrangian approaches

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Dynamics of a disperse phase in a swirling two-phase flow behind a sudden tube expansion is simulated with the aid of Eulerian and full Lagrangian descriptions. The carrier phase is described by three-dimensional Reynolds averaged Navier–Stokes equations with consideration of inverse influence of particles on the transport processes in gas. The velocity profiles calculated using these two approaches are practically the same. It is shown that the main difference between the Eulerian and Lagrangian approaches is presented by the concentration profile of the dispersed phase. The Eulerian approach underpredicts the value of particle concentration as compared with the Lagrangian approach (the difference reaches 15−20 %). The dispersed phase concentration predicted by the Lagrangian approach agrees with the measurement data somewhat better than the data obtained through the Eulerian approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Kutateladze, E.P. Volchkov, and V.I. Terekhov, Aerodynamics and Heat and Mass Transfer in Confined Vortex Flows, IT SB AS USSR, Novosibirsk, 1987.

    Google Scholar 

  2. A. Gupta, D. Lilley, and N. Syred, Swirl Flows, Abacus Press, Tunbridge Wells, 1984.

    Google Scholar 

  3. A.A. Khalatov, Theory and Practice of Swirling Flows, Naukova Dumka, Kiev, 1989.

    Google Scholar 

  4. M. Sommerfeld and H.-H. Qiu, Detailed measurements in a swirling particulate two-phase flow by a phase-Doppler anemometer, Int. J. Heat Fluid Flow, 1991, Vol. 12, P. 20–28.

    Article  Google Scholar 

  5. M. Sommerfeld and H.-H. Qiu, Characterization of particle-laden, confined swirling flow by phase-doppler anemometer and numerical calculation, Int. J. Multiphase Flow, 1993, Vol. 19, P. 1093–1127.

    Article  MATH  Google Scholar 

  6. J.P. Jing, Z.Q. Li, L. Wang, Z.C. Chen, L.Z. Chen, and F.C. Zhang, Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner, Chem. Engng Sci., 2011, Vol. 66, P. 2864–2871.

    Article  Google Scholar 

  7. L.I. Seleznev and S.G. Tsvigun, Investigation of the influence of the conditions of swirling on the structure of a two-phase flow in an expanding channel, Fluid Dynamics, 1983, No. 5, P. 729–734.

    Google Scholar 

  8. M. Sommerfeld, A. Ando, and D. Wennerberg, Swirling, particle-laden flows through a pipe expansion, ASME J. Fluids Engng, 1992, Vol. 114, P. 648–656.

    Article  Google Scholar 

  9. A.A. Vinberg, L.I. Zaichik, and V.A. Pershukov, Calculation of two-phase swirling flows, Fluid Dynamics, 1994, No. 1, P. 55–60.

    Article  MATH  ADS  Google Scholar 

  10. L.X. Zhou, C.M. Liao, and T. Chen, Simulation of strongly swirling turbulent gas-particle flows using USM and k-ε-k P two-phase turbulence models, Powder Techn., 2001, Vol. 114, P. 1–11.

    Article  Google Scholar 

  11. M. Sijercic and F. Menter, Numerical grid refinement in modeling two-phase swirl flow, Thermophysics and Aeromechanics, 2003, Vol. 10, No. 2, P. 163–174.

    Google Scholar 

  12. S.V. Apte, K. Mahesh, P. Moin, and J.C. Oefelein, Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, Int. J. Multiphase Flow, 2003, Vol. 29, P. 1311–1331.

    Article  MATH  Google Scholar 

  13. Y. Liu, L.X. Zhou, and C.X. Xu, Numerical simulation of instantaneous flow structure of swirling and nonswirling coaxial-jet particle-laden turbulence flows, Physica A, 2010, Vol. 389, P. 5380–5389.

    Article  ADS  Google Scholar 

  14. A.V. Shvab and N.S. Evseev, Studying the separation of particles in a turbulent vortex flow, Theor. Found. Chem. Engng, 2015, Vol. 49, No. 2, P. 191–199.

    Article  Google Scholar 

  15. M.A. Pakhomov and V.I. Terekhov, Numerical simulation of turbulent swirling gas-dispersed flow behind a sudden tube expansion, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 5, P. 597–608.

    Article  ADS  Google Scholar 

  16. D.A. Drew, Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech., 1983, Vol. 15, P. 261–291.

    Article  MATH  ADS  Google Scholar 

  17. R.I. Nigmatulin, Dynamics of Multiphase Media, CRC Press, 1990.

    Google Scholar 

  18. I.V. Derevich, Spectral diffusion model of heavy inertial particles in a random velocity field of the continuous medium, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 2, P. 143–162.

    Article  ADS  Google Scholar 

  19. D.Ph. Sikovsky, Singularity of inertial particle concentration in the viscous sublayer of wall-bounded turbulent flows, Flow, Turbulence and Combustion, 2014, Vol. 92, P. 41–64.

    Article  Google Scholar 

  20. S. Jakirlic, K. Hanjalic, and C. Tropea, Modeling rotating and swirling turbulent flows: a perpetual challenge, AIAA J., 2002, Vol. 40, P. 1984–1996.

    Article  ADS  Google Scholar 

  21. S. Fu, P.G. Huang, B.E. Launder, and M.A. Leschziner, A comparison of algebraic and differential secondmoment closures for axisymmetric turbulent shear flows with and without swirl, ASME J. Fluids Engng, 1988, Vol. 110, P. 216–221.

    Article  Google Scholar 

  22. A.M. Jawarneh and G.H. Vatistas, Reynolds stress model in the prediction of confined turbulent swirling flows, ASME J. Fluids Engng, 2006, Vol. 128, P. 1377–1388.

    Article  Google Scholar 

  23. X.-Q. Chen and J.C.F. Pereira, Prediction of evaporating spray in anisotropically turbulent gas flow, Numerical Heat Transfer A, 1995, Vol. 27, P. 143–162.

    Article  ADS  Google Scholar 

  24. D.B. Taulbee, F. Mashayek, and C. Barre, Simulation and Reynolds stress modeling of particle-laden turbulent shear flows, Int. J. Heat Fluid Flow, 1999, Vol. 20, P. 368–373.

    Article  Google Scholar 

  25. N. Beishuizen, B. Naud, and D. Roekaerts, Evaluation of a modified Reynolds stress model for turbulent dispersed two-phase flows including two-way coupling, Flow, Turbulence and Combust, 2007, Vol. 79, P. 321–341.

    Article  MATH  Google Scholar 

  26. D.W. Meyer, Modelling of turbulence modulation in particle- or droplet-laden flows, J. Fluid Mech., 2012, Vol. 706, P. 251–273.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Z.F. Tian, J.Y. Tu, and G.H. Yeoh, Numerical simulation and validation of dilute gas-particle flow over a backward-facing step, Aerosol Sci. Techn., 2005, Vol. 39, P. 319–332.

    Article  Google Scholar 

  28. P. Frawley, A.P. O’Mahony, and M. Geron, Comparison of Lagrangian and Eulerian simulations of slurry flows in a sudden expansion, ASME J. Fluids Engng, 2010, Vol. 132, Paper 091301.

    Article  Google Scholar 

  29. M.A. Pakhomov and V.I. Terekhov, Comparison of the Eulerian and Lagrangian approaches in studying the flow pattern and heat transfer in a separated axisymmetric turbulent gas-droplet flow, J. Appl. Mech. Tech. Phys., 2013, Vol. 54, No. 4, P. 596–607.

    Article  MATH  ADS  Google Scholar 

  30. A. Fadai-Ghotbi, R. Manceau, and J. Boree, Revisiting URANS computations of the backward-facing step flow using second moment closures. Influence of the numerics, Flow, Turbulence and Combust, 2008, Vol. 81, P. 395–410.

    Article  MATH  Google Scholar 

  31. R. Manceau and K. Hanjalic, Elliptic blending model: a new near-wall Reynolds-stress turbulence closure, Phys. Fluids, 2002, Vol. 14, P. 744–754.

    Article  MATH  ADS  Google Scholar 

  32. L.I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows, Phys. Fluids, 1999, Vol. 11, P. 1521–1534.

    Article  MATH  ADS  Google Scholar 

  33. I.V. Derevich, Statistical modelling of mass transfer in turbulent two-phase dispersed flows. 1. Model development, Int. J. Heat Mass Transfer, 2000, Vol. 43, P. 3709–3723.

    Article  MATH  Google Scholar 

  34. C.T. Crowe, M.P. Sharma, and D.E. Stock, The particle source in cell (PSI-Cell) method for gas-droplet flows, ASME J. Fluids Engng, 1977, Vol. 99, P. 325–332.

    Article  Google Scholar 

  35. A.D. Gosman and E. Ioannides, Aspects of computer simulation of liquid-fuelled combustors, J. Energy, 1983, Vol. 7, P. 482–490.

    Article  ADS  Google Scholar 

  36. C.K. Chan, H.Q. Zhang, and K.S. Lau, An improved stochastic separated flow model for turbulent two-phase flow, Comp. Mech., 2000, Vol. 24, P. 491–502.

    Article  MATH  ADS  Google Scholar 

  37. P.G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech., 1965, Vol. 22, P. 385–400.

    Article  MATH  ADS  Google Scholar 

  38. P.G. Saffman, Corrigendum. “The lift on a small sphere in a slow shear flow, J. Fluid Mech., 1965, Vol. 22, P. 385–400, J. Fluid Mech., 1968. Vol. 31, P. 624.

    Article  MATH  ADS  Google Scholar 

  39. L.I. Zaichik, V.M. Alipchenkov, and A.R. Avetissian, A statistical model for predicting the heat transfer of solid particles in turbulent flows, Flow, Turbulence and Combust., 2011, Vol. 86, P. 497–518.

    Article  MATH  Google Scholar 

  40. J.-P. Minier, E. Peirano, and S. Chibbaro, PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow, Phys. Fluids, 2004, Vol. 16, P. 2419–2431.

    Article  MATH  ADS  Google Scholar 

  41. E. Amani and M.R.H. Nobari, Systematic tuning of dispersion models for simulation of evaporating sprays, Int. J. Multiphase Flow, 2013, Vol. 48, P. 11–31.

    Article  Google Scholar 

  42. S. Moissette, B. Oesterle, and P. Boulet, Temperature fluctuations of discrete particles in a homogeneous turbulent flow: a Lagrangian model, Int. J. Heat Fluid Flow, 2001, Vol. 22, P. 220–226.

    Article  Google Scholar 

  43. J. Pozorski and J.-P. Minier, On the Lagrangian turbulent dispersion models based on the Langevin equation, Int. J. Multiphase Flow, 1998, Vol. 24, P. 913–945.

    Article  MATH  Google Scholar 

  44. T.L. Bocksell and E. Loth, Stochastic modeling of particle diffusion in a turbulent boundary layer, Int. J. Multiphase Flow, 2006, Vol. 32, P. 1234–1253.

    Article  MATH  Google Scholar 

  45. A.N. Osiptsov, Lagrangian modeling of dust admixture in gas flows, Astrophysics Space Sci., 2000, Vol. 274, P. 377–386.

    Article  MATH  ADS  Google Scholar 

  46. D.P. Healy and J.B. Young, Full Lagrangian methods for calculating particle concentration fields in dilute gasparticle flows, Proc. Royal Society A, 2005, Vol. 461, P. 2197–2225.

    Article  MathSciNet  MATH  Google Scholar 

  47. K. Hanjalic and S. Jakirlic, Contribution towards the second-moment closure modelling of separating turbulent flows, Computers & Fluids, 1998, Vol. 27, P. 137–156.

    Article  MATH  Google Scholar 

  48. P.A. Dellenback, D.E. Metzger, and G.P. Neitzel, Measurements in turbulent swirling flow through an abrupt axisymmetric expansion, AIAA J., 1989, Vol. 26, P. 669–681.

    Article  ADS  Google Scholar 

  49. J.R. Fessler and J.K. Eaton, Turbulence modification by particles in a backward-facing step flow, J. Fluid Mech., 1999, Vol. 314, P. 97–117.

    Article  MATH  ADS  Google Scholar 

  50. A.Yu. Varaksin, Fluid dynamics and thermal physics of two-phase flows: problems and achievements, High Temperature, 2013, Vol. 51, No. 3, P. 377–407.

    Article  Google Scholar 

  51. E.P. Volchkov, L.I. Zaichik, and V.A. Pershukov, Simulation of Solid Fuel Combustion, Nauka, Moscow, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Additional information

The work was financially supported by the grant of Russian Science Foundation (Project No. 14-19-00402).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Solid particle spreading in gas-dispersed confined swirling flow. Eulerian and Lagrangian approaches. Thermophys. Aeromech. 24, 325–338 (2017). https://doi.org/10.1134/S0869864317030015

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864317030015

Key words

Navigation