Skip to main content
Log in

N and C Isotopic Compositions of the Lower Triassic of Southern Primorye and Reconstruction of the Habitat Conditions of Marine Organisms

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

N and C isotopic data are recorded and presented for the first time for the Lower Triassic claystones of Southern Primorye (Abrek Section). Five N isotope intervals and 11 more or less pronounced negative C isotope excursions, likely to reflect instability of the temperature regime and the oceanographic situation in the Early Triassic, are recognized in the section. The most favorable conditions for ammonoid recovery and other marine organisms in the Early Triassic (after the end- Permian ecological crisis) were associated with the late Induan—early Olenekian transgression and probable cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo, T.J., Shen, Y., Zhang, T.G., et al., Association of 34S-depleted pyrite layers with negative carbonate d13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses, Geochim. Geophys. Geosyst., 2007, vol. 9, pp. 1–10. http://dx.doi.org/10.1029/2007GCOO1823

    Google Scholar 

  • Algeo, T.J., Rowe, H., Hower, J.C., et al., Oceanic denitrification during Late Carboniferous glacial-interglacial cycles, Nat. Geosci., 2008, vol. 1, pp. 709–714.

    Article  Google Scholar 

  • Algeo, T.J., Meyers, P.A., Robinson, R.S., et al., Icehousegreenhouse variations in marine denitrification, Biogeosciences, 2014, vol. 11, pp. 1273–1295.

    Article  Google Scholar 

  • Altabet, M.A., Francois, R., Murray, D.W., et al., Climaterelated variations in denitrification in the Arabian Sea from sediment 15N/14N ratios, Nature, 1995, vol. 373, pp. 506–509.

    Article  Google Scholar 

  • Altabet, M.A., Isotopic tracers of the marine nitrogen cycle: present and past, in The Handbook of Environmental Chemistry. Vol. 2. Marine Organic Matter: Chemical and Biological Markers, Hutzinger, O., Ed., Berlin: Springer, 2005, pp. 251–294.

    Google Scholar 

  • Aref’ev, M.P., Kuleshov, V.N., and Pokrovskii, B.G., Carbon and oxygen isotope composition in upper Permianlower Triassic terrestrial carbonates of the east European platform: A global ecological crisis against the background of an unstable climate, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 11–15.

    Article  Google Scholar 

  • Baud, A.M., Magaritz, M., and Holser, W.T., Permian–Triassic of the Tethys: carbon isotope stratigraphy, Geol. Runds., 1989, vol. 78, pp. 649–677.

    Article  Google Scholar 

  • Bauersachs, T., Schouten, S., Compaore, J., et al., Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria, Limnol. Oceanogr., 2009, vol. 54, no. 4, pp. 1403–1411.

    Article  Google Scholar 

  • Becker, L., Poreda, R.J., Hunt, A.G., et al., Impact event at the Permian–Triassic boundary: evidence from extraterrestrial noble gases in fullerenes, Science, 2001, vol. 291, pp. 1530–1533.

    Article  Google Scholar 

  • Burii, I.V., Stratigraphy of Triassic deposits of the Southern Primorye, in Tr. Dal’nevostoch. Politekh. Inst. (Trans. Far East Polytechn. Inst.), 1959, no. 1, pp. 3–34.

    Google Scholar 

  • Cao, C.Q., Love, G.D., Hays, L.E., et al., Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event, Earth Planet. Sci. Lett., 2009, vol. 281, pp. 188–201.

    Article  Google Scholar 

  • Chumakov, N.M., Climate and climatic zoning of the Permian and Early Triassic, in Klimat v epokhi biosfernykh perestroek. Tr. GIN AN. Vyp. 550 (Trans. Geol. Inst. Russ. Akad. Sci. Iss. 550), Moscow: Nauka, 2004, pp. 230–256.

    Google Scholar 

  • Dagys, A.S., Triasovye brakhiopody (Triassic Brachiopods), Novosibirsk: Nauka, 1974 [in Russian].

    Google Scholar 

  • Dustira, A.M., Wignall, P.B., Joachimski, M., and Blomeir, D., Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2013, vol. 374, pp. 303–313.

    Article  Google Scholar 

  • Galfetti, T., Bucher, H., Brayard, A., et al., Late Early Triassic climate change: insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 243, pp. 394–411.

    Article  Google Scholar 

  • Garbelli, C., Angiolini, L., Brand, U., et al., The paradox of the end Permian global oceanic anoxia, Permophiles, 2015, no. 61, pp. 26–28.

    Google Scholar 

  • Glud, R.N., Thamdrup, B., Stahl, H., et al., Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan), Limnol. Oceanogr., 2009, vol. 54, no. 4, pp. 723–734.

    Article  Google Scholar 

  • Goudemand, N., Romano, C., Brayard, A., et al., Comment on “Lethally hot temperatures during the Early Triassic greenhouse”, Science, 2013, vol. 339, pp. 1033a–1033c.

    Article  Google Scholar 

  • Grasby, S.E. and Beauchamp, B., Intrabasin variability of the carbon-isotope record across the Permian–Triassic transition, Sverdrup Basin, Arctic Canada, Chem. Geol., 2008, vol. 253, pp. 141–150.

    Article  Google Scholar 

  • Grasby, S.E., Beauchamp, B., Bond, D.P.G., et al., Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction, Geology, 2015, vol. 127, pp. 1331–1347.

    Google Scholar 

  • Grigoryan, A.G., Alekseev, A.S., Joachimski, M.M., and Gatovsky, Y.A., Permian–Triassic biotic crisis: a multidisciplinary study of Armenian sections, Proc. XVIII Int. Congr. on the Carboniferous and Permian, Kazan, Russia, August 11–15, 2015, Kazan: Kazan Federal. Univ., 2015.

    Google Scholar 

  • Hermann, E., Hochuli, P.A., Bucher, H., et al., A close-up view of the Permian–Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform), Global Planet. Change, 2010, vol. 74, pp. 156–167.

    Article  Google Scholar 

  • Hermann, E., Hochuli, P.A., Méhay, S., et al., Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: the Salt Range and Durgar Range records, Sediment. Geol., 2011, vol. 234, pp. 19–41.

    Article  Google Scholar 

  • Horacek, M., Brander, R., and Abart, R., Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 252, pp. 347–354.

    Article  Google Scholar 

  • Jenkyns, H.C., Gröcke, D.R., and Hesselbo, S.P., Nitrogen isotope evidence for mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event, Paleoceanography, 2001, vol. 16, pp. 593–603.

    Article  Google Scholar 

  • Jenkyns, H.C., Forster, A., Schouten, S., and Damste, J.S., High temperatures in the Late Cretaceous Arctic Ocean, Nature, 2004, vol. 423, pp. 888–892.

    Article  Google Scholar 

  • Jia, C., Huang, J., Kershaw, S., and Luo, G., Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction, Geobiology, 2012, vol. 10, pp. 60–71.

    Article  Google Scholar 

  • Joachimski, M.M., Lai, X., Shen, S., et al., Climate warming in the latest Permian and the Permian–Triassic mass extinction, Geology, 2012, vol. 40, pp. 195–198.

    Article  Google Scholar 

  • Kaiho, K., Kajiwara, Y., Nakano, Y., et al., End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle, Geology, 2001, vol. 29, pp. 815–818.

    Article  Google Scholar 

  • Kiparisova, L.D., Lower Triassic lamellibranchs of the Ussuriisk Krai, in Tr. GIN AN SSSR (Trans. Geol. Inst. USSR Akad. Sci.), 1938, vol. 7, pp. 197–311.

    Google Scholar 

  • Kiparisova, L.D., Paleontological substantiation of the stratigraphy of Triassic deposits of the Primorsky Krai. Part 2. Late Triassic of bivalves and general stratigraphy, in Tr. VSEGEI. Nov. ser. T. 181 (Trans. All-Russ. Res. Geol. Inst. New. Ser. Vol. 181), Moscow: Nedra, 1972.

    Google Scholar 

  • Knies, J., Grasby, S.E., Beauchamp, B., and Schubert, C.J., Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada, Geology, 2013, vol. 41, pp. 167–170.

    Google Scholar 

  • Korte, C. and Kozur, H.W., Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review, J. Asian Earth Sci., 2010, vol. 39, pp. 215–235.

    Article  Google Scholar 

  • Korte, C., Pande, P., Kalia, P., et al., Massive volcanism at the Permian–Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere, J. Asian Earth Sci., 2010, vol. 37, pp. 293–311.

    Article  Google Scholar 

  • Kozur, H.W., Pelagic uppermost Permian and Permian–Triassic boundary conodonts of Iran. Part II: Investigated sections and evaluation of the conodont faunas, Hallesches Jahrb. Geowiss, 2005, vol. 19, pp. 49–86.

    Google Scholar 

  • Krassilov, V.A., Model of biospheric crises, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Rearrangements and the Evolution of Biosphere), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2001, vol. 4, pp. 9–16.

    Google Scholar 

  • Kump, L.R., Pavlov, A., and Arthur, M.A., Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia, Geology, 2005, vol. 33, pp. 397–400.

    Article  Google Scholar 

  • Lozovskii, V.R., Permo–Triassic crisis and its main causes, Byull. Mosk. O-va Ispyt. Prir. Otd. Geol., 2013, vol. 88, no. 1, pp. 49–58.

    Google Scholar 

  • Lukeneder, A., Ammonoid habitats and life history, in Ammonoid Paleobiology: From Anatomy to Ecology. Topics in Geobiology. Vol. 43. Ch. 18, Klug, C., Korn, D., De Baets, K., and Mapes, R.H., Eds., Dordrecht: Springer, 2015, pp. 697–800. doi 10.1007/978-94-017-9630-9_18

    Google Scholar 

  • Luo, G., Wang, Y., Algeo, T.J., et al., Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction, Geology, 2011, vol. 39, no. 7, pp. 647–650.

    Article  Google Scholar 

  • Moriya, K., Isotope signature of ammonoid shells, in Ammonoid Paleobiology: from Anatomy to Ecology. Topics in Geobiology. Vol. 43. Ch. 19, Klug, C., Korn, D., De Baets, K., and Mapes, R.H., Eds., Dordrecht: Springer, 2015, pp. 801–844. doi 10.1007/978-94-017-9630-9_19

    Google Scholar 

  • Nakanishi, T. and Minagawa, M., Stable carbon and nitrogen isotopic composition of sinking particles in the northeast Japan Sea, Geochem. J., 2003, vol. 37, pp. 261–275.

    Article  Google Scholar 

  • Nakrem, H.A., Orchard, M., Weitchart, W., et al., Triassic conodonts from Svalbard and the Boreal correlations, Polar Res., 2008, vol. 27, no. 3, pp. 523–537.

    Article  Google Scholar 

  • Pucéat, E., Joachimski, M.M., Bouilloux, A., et al., Revised phosphate-water fractionation equation reassessing palaeotemperatures derived from biogenic apatite, Earth Planet. Sci. Lett., 2010, vol. 298, pp. 135–142.

    Article  Google Scholar 

  • Reichow, M.K., Pringle, M.S., and Al’mukhamedov, A.I., The times and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.

    Article  Google Scholar 

  • Renne, P.R. and Basu, A.R., Rapid eruption of the Siberian traps flood basalts at the Permian–Triassic boundary, Science, 1991, vol. 253, pp. 176–179.

    Article  Google Scholar 

  • Renne, P.R., Zichao, Z., Richards, M.A., et al., Synchrony and causal relations between Permian–Triassic boundary crisis and Siberian flood volcanism, Science, 1995, vol. 269, pp. 1414–1416.

    Article  Google Scholar 

  • Romano, C., Goudemand, N., Vennemann, T.W., et al., Climatic and biotic upheavals following the end-Permian mass extinction, Nat. Geosci., 2013, vol. 6, pp. 57–60.

    Article  Google Scholar 

  • Saitoh, M., Ueno, Y., and Nishizawa, M., Nitrogen isotope chemostratigraphy across the Permian–Triassic boundary at Chaotian, Sichuan, South China, J. Asian Earth Sci., 2014, vol. 93, pp. 113–128.

    Article  Google Scholar 

  • Saltzman, M.R., Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans, Geology, 2005, vol. 33, no. 7, pp. 575–576.

    Article  Google Scholar 

  • Schobben, M., Joachimski, M.M., Korn, D., et al., Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 2014, vol. 26, pp. 675–683.

    Article  Google Scholar 

  • Schoepfer, S.D., Henderson, C.M., Garrison, G.H., and Ward, P.D., Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic boundary, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vols. 313/314, pp. 181–188.

    Article  Google Scholar 

  • Sigman, D.M., Karsh, K.L., and Casciotti, K.L., Ocean process tracers: nitrogen isotopes in the ocean, 2009. www.princeton.edu/sigman/publications/pdf/Sigman-Karsh-Casciotti-09.pdf.

    Google Scholar 

  • Sobolev, S.V., Sobolev, A.V., Kuzmin, A.V., et al., Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, 2011, vol. 477, pp. 312–316.

    Article  Google Scholar 

  • Song, H., Wignall, P.B., Chu, D., et al., Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath, Sci. Reports, 2014, no. 4, p. 1038.

    Google Scholar 

  • Sun, Y., Joachimski, M.M., Wignall, P.B., et al., Lethally hot temperatures during the Early Triassic Greenhouse, Science, 2012, vol. 338, pp. 366–370.

    Article  Google Scholar 

  • Takashima, R., Nishi, H., Yamanaka, T., et al., High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the lower Campanian in the Northwest Pacific, Earth Planet. Sci. Lett., 2010, vol. 289, pp. 570–582.

    Article  Google Scholar 

  • The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia, Shigeta Yasunari, Zakharov, Y.D., Maeda Haruyoshi, and Popov, A.M., Eds., Nat. Mus. Nat. Sci. Monogr., no. 38, Tokyo; Natl. Mus. Nat. Sci., 2009.

  • Twitchett, R.J., Looy, C.V., Morante, R., et al., Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis, Geology, 2001, vol. 29, no. 4, pp. 351–354.

    Article  Google Scholar 

  • Urey, H.C., Lowenstam, H.A., Epstein, S., and McKinney, C.R., Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southern United States, Geology, 1951, vol. 69, pp. 399–416.

    Google Scholar 

  • Wang, X.T., Sigman, D.M., Cohen, A.L., et al., Isotopic composition of skeleton-bound organic nitrogen in reefbuilding symbiotic corals: a new method and proxy evaluation at Bermuda, Geochim. Cosmochim. Acta, 2015, vol. 148, pp. 179–190.

    Article  Google Scholar 

  • Ware, D., Bucher, H., Brayard, A., et al., High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 440, pp. 363–373. doi 10.1016/j.palaeo.2015.09.013

    Article  Google Scholar 

  • Wignall, P.B. and Hallam, A., Anoxia as a cause of the Permian–Triassic mass extinction: facies evidence from northern Italy and the western United States, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1992, vol. 102, pp. 215–237.

    Article  Google Scholar 

  • Wignall, P.B., Morante, R., and Newton, R., The Permo-Triassic transition in Spitsbergen: d13Corg-chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils, Geol. Mag., 1998, vol. 135, no. 1, pp. 47–62.

    Article  Google Scholar 

  • Wignall, P.B., Bond, D.P.G., Sun, Y., et al., Ultra-shallowmarine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation, Geol. Mag., 2016, vol. 153, no. 2, pp. 316–331.

    Article  Google Scholar 

  • Xu, D.Y., Ma, S.L., Chai, Z.F., et al., Abundance variation of iridium and trace elements at the Permian/Triassic boundary at Shangsi in China, Nature, 1985, vol. 314, pp. 154–156.

    Article  Google Scholar 

  • Yin, H., Xie, S., Luo, G., et al., Two episodes of environmental change at the Permian–Triassic boundary of the GSSP section Meishan, Earth-Sci. Rev., 2012, vol. 115, pp. 163–172.

    Article  Google Scholar 

  • Zakharov, Y.D., Correlation of the Induan–Olenekian boundary transition, Albertiana, 2012, no. 40, pp. 15–20.

    Google Scholar 

  • Zakharov, Y.D. and Popov, A.M., Recovery of brachiopod and ammonoid faunas following the end-Permian crisis: additional evidence from the Lower Triassic of the Russian Far East and Kazakhstan, J. Earth Sci., 2014, vol. 25, no. 1, pp. 1–44.

    Article  Google Scholar 

  • Zakharov, Yu.D., Naidin, D.P., and Teis, R.V., Isotopic oxygen composition of the Early Triassic cephalopods from the Arctic Siberia and salinity of boreal basins in the Early Mesozoic, Izv. Akad. Nauk SSSR. Ser. Geol., 1975, no.4, pp. 101–113.

    Google Scholar 

  • Zakharov, Y.D., Boriskina, N.G., Cherbadzhi, A.K., et al., Main trends in Permo–Triassic shallow-water temperature changes: evidence from oxygen isotope and Ca–Mg ratio data, Albertiana, 1999, no. 23, pp. 11–22.

    Google Scholar 

  • Zakharov, Yu.D., Boriskina, N.G., and Popov, A.M., Rekonstruktsiya uslovii morskoi sredy pozdnego paleozoya i mezozoya po izotopnym dannym (na primere severa Evrazii) (Reconstruction of the Late Paleozoic and Mesozoic Marine Environments from Isotope Data Using Northern Eurasia As an Example), Vladivostok: Dal’nauka, 2001 [in Russian].

    Google Scholar 

  • Zakharov, Yu.D., Popov, A.M., and Konovalova, I.V., Novy Dzhigit Bay–Vyatlin Cape, in Trias i yura Sikhote- Alinya. 1. Terrigennyi kompleks (Triassic and Jurassic of the Sikhote–Alin. 1. Terrigenous Asseblage), Markevich, P.V. and Zakharov, Yu.D., Eds., Vladivostok: Dal’nauka, 2004a, pp. 35–43.

    Google Scholar 

  • Zakharov, Yu.D., Shigeta, Ya., Popov, A.M., et al., Abrek Bay, in Trias i yura Sikhote-Alinya. 1. Terrigennyi kompleks (Triassic and Jurassic of the Sikhote-Alin. 1. Terrigenous Assemblage), Vladivostok: Dal’nauka, 2004b, pp. 79–85.

    Google Scholar 

  • Zakharov, Yu.D., Biakov, A.S., Richoz, S., and Horacek, M., Importance of carbon isotopic data of the Permian-Triassic boundary layers in the Verkhoyansk region for the global correlation of the basal Triassic layer, Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 1–5.

    Article  Google Scholar 

  • Zhang, X., Sigman, D.M., Morel, F.M.M., and Kraepiel, A.M.L., Nitrogen isotope fractionation by alternative nitrogenizes and past ocean anoxia, PNAS, 2014, vol. 111, no. 13, pp. 4782–4787. www.pnas.org/cgi/doi/10.1073/pnas.1402976111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Zakharov.

Additional information

Original Russian Text © Y.D. Zakharov, M. Horacek, Y. Shigeta, A.M. Popov, L.G. Bondarenko, 2018, published in Stratigrafiya, Geologicheskaya Korrelyatsiya, 2018, Vol. 26, No. 5, pp. 30–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, Y.D., Horacek, M., Shigeta, Y. et al. N and C Isotopic Compositions of the Lower Triassic of Southern Primorye and Reconstruction of the Habitat Conditions of Marine Organisms. Stratigr. Geol. Correl. 26, 534–551 (2018). https://doi.org/10.1134/S0869593818050064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593818050064

Keywords

Navigation