Skip to main content
Log in

Model of the Formation of Monzogabbrodiorite–Syenite–Granitoid Intrusions by the Example of the Akzhailau Massif (Eastern Kazakhstan)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper presents a model of the formation of a multiphase Akzhailau granitoid massif formed within a Caledonian block of the Earth’s crust in the Hercynian time. This work is based on the results of major and trace element composition, geochronological, mineralogical and isotope-geochemical studies. Three stages of the formation of the Akzhailau massif are distinguished, which differ significantly from the previously accepted concepts about the multicomplex and polychronous origin of this intrusion: (1) the formation of moderately alkaline A2-type leuсogranites (308–301 Ma); (2) intrusion of monzodiorites into the base of leucogranites (~295 Ma), increasing degree of partial melting of protoliths with the formation of syenites and moderately alkaline granites of I-type (294–292 Ma); (3) intrusion of dikes and small bodies of alkaline ferroeckermannite A1-type leucogranites in the west and north of massif (~289 Ma). The Akzhailau massif was formed within about 15 Myr in the middle–upper crust through the interaction of plume-related subalkaline basitic magmas with metamorphosed crustal protolith of the orogenic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Antipin, V.S., Perepelov, A.B., and Odgerel, D., Rare-metal granites from various zones of the Early Mesozoic magmatic areal (Mongolia): geochemical and petrogenetic features, Dokl. Earth Sci., 2019, vol. 485, no. 3, pp. 317–321.

    Article  CAS  Google Scholar 

  2. Baisalova, A.O., Metasomatic Processes of Rare-Metal Occurrences of the Akzhailautas Granite Massif and Adjacent Areas, PhD Thesis, Almaty, 2018.

  3. Barbarin, B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, 1999, vol. 46, pp. 605–626.

    Article  CAS  Google Scholar 

  4. Beard, J.S. and Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar, J. Petrol., 1991, vol. 32, pp. 365–401.

    Article  CAS  Google Scholar 

  5. Beskin, S.M., Larin, V.M., and Marin, Yu.B., Redkometall’nye granitovye formatsii (Rare-Metal Granite Formations), Leningrad: Nauka, 1979.

  6. Black, L.P., Kamo, S.L., Allen, C.M., et al., Improved 206Pb/218U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 2004, vol. 205, pp. 115–140.

    Article  CAS  Google Scholar 

  7. Boynton, W.V., Cosmochemistry of the rare earth elements: meteorite studies. rare earth element geochemistry, Amsterdam: Elsevier, 1984.

    Google Scholar 

  8. Burmakina, G.N. and Tsygankov, A.A., Mafic microgranular enclaves in Late Paleozoic granitoids in the Burgasy quartz syenite massif, Western Transbaikalia: composition and petrogenesis, Petrology, 2013, vol. 21, no. 3, pp. 280–304.

    Article  Google Scholar 

  9. Chappell, B.W. and White, A.J.R., Two contrasting granite types, Pacific Geol., 1974, vol. 8, pp. 173–174.

    Google Scholar 

  10. Collins, W.J., Beams, S.D., White, A.J.R., and Chappell, B.W., Nature and origin of A-type granites with particular reference to southeastern Australia, Contrib. Mineral. Petrol., 1982, vol. 80, pp. 189–200.

    Article  CAS  Google Scholar 

  11. Cuney, M. and Barbey, P., Uranium, rare metals, and granulite-facies metamorphism, Geosci. Front., 2014, vol. 5, no. 5, pp. 729–745.

    Article  CAS  Google Scholar 

  12. Degtyarev, K.E., Tektonicheskaya evolyutsiya rannepaleozoiskikh ostrovoduzhnykh sistem i formirovanie kontinental’noi kory kaledonid Kazakhstana (Tectonic Evolution of the Early Paleozoic Island-Arc Systems and Formation of Continental Crust of the Kazakhstan Caledonides), Moscow: GEOS, 2012.

  13. Degtyarev, K.E., Shatagin, K.N., Kovach, V.P., and Tret’yakov, A.A., The formation processes and isotopic structure of continental crust of the Chingiz Range Caledonides (Eastern Kazakhstan), Geotectonics, 2015, vol. 49, no. 6, pp. 485–514.

    Article  CAS  Google Scholar 

  14. Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhmodik, S.M., A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu–Ni–PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  15. Eby, G.N., Chemical subdivision of the a-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.

    Article  CAS  Google Scholar 

  16. Ermolov, P.V., Izokh, E.P., Ponomareva, A.P., and Tyan, V.D., Gabbro-granitnye serii zapadnoi chasti Zaisanskoi skladchatoi sistemy (Gabbro-Granite Series of the Western Zaisan Orogenic System), Novosibirsk: Nauka, 1977.

  17. Ermolov, P.V., Vladimirov, A.G., Izokh, A.E., et al., Orogennyi magmatizm ofiolitovykh poyasov (na primere Vostochnogo Kazakhstana) (Orogenic Magmatism of Ophiolite Belts: Evidence from the Eastern Kazakhstan), Novosibirsk: Nauka, 1983.

  18. Frolova, O.V., Study of Geological Structure and Composition of Ores of the Verkhnee Espe Rare-Earth Deposit for Construction of Forecasting-Prospecting Model (Eastern Kazakhstan), Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Ust’-Kamenogorsk, 2018. 145 s.

  19. Frost, B.R., Barnes, C.G., Collins, W.J., et al., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  CAS  Google Scholar 

  20. Frost, C.D. and Frost, B.R., On ferroan (A-type) granitoids: their compositional variability and modes of origin, J. Petrol., 2011, vol. 52, no. 1, pp. 39–53.

    Article  CAS  Google Scholar 

  21. Grebennikov A.V. A-type granites and related rocks: problems of identification, petrogenesis, and classification, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1074–1086.

    Article  Google Scholar 

  22. Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., Glitter: data reduction software for laser ablation ICP-MS, Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Ed. Sylvester, P., Eds., Mineral. Ass. Canada, Short Course Ser., 2008, vol. 40, pp. 307–311.

  23. Khromykh, S.V., Basic and associated granitoid magmatism and geodynamic evolution of the Altai accretion–collision system (Eastern Kazakhstan), Russ. Geol. Geophys., 2022, vol. 63, no. 3, pp. 279–299.

    Article  Google Scholar 

  24. Khromykh, S.V., Tsygankov, A.A., Kotler, P.D., et al., Late Paleozoic granitoid magmatism of Eastern Kazakhstan and western Transbaikalia: plume model test, Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 773–789.

    Article  Google Scholar 

  25. Khromykh, S.V., Kotler, P.D., and Semenova, D.V., Geochemistry, age, and geodynamic settings of the formation of the Saur gabbro-granitoid intrusive series (Eastern Kazakhstan), Geosfer. Issled., 2019, no. 2, pp. 6–26.

  26. Khromykh, S.V., Kotler, P.D., Izokh, A.E., and Kruk, N.N., A review of Early Permian (300–270 Ma) magmatism in Eastern Kazakhstan and implications for plate tectonics and plume interplay, Geodynam. Tectonophys., 2019, vol. 10, no. 1, pp. 79–99.

    Article  Google Scholar 

  27. Khromykh, S.V., Semenova, D.V., Kotler, P.D., et al., Orogenic volcanism in Eastern Kazakhstan: composition, age, and geodynamic position, Geotectonics, 2020, vol. 54, no. 4, pp. 510–528.

    Article  Google Scholar 

  28. Khromykh, S.V., Kotler, P.D., Kulikova, A.V., et al., Early Triassic monzonite–granite series in Eastern Kazakhstan as a reflection of Siberian large igneous province activity, Minerals, 2022, vol. 12, no. 9, p. 1101. https://doi.org/10.3390/min12091101

    Article  CAS  Google Scholar 

  29. Khubanov, V.B., Buyantuev, M.D., and Tsygankov, A.A., U-Pb dating of zircon from Pz3–Mz igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 190–205.

    Article  Google Scholar 

  30. Kotler, P.D., Khromykh, S.V., Vladimirov, A.G., et al., New data on the age and geodynamic interpretation of the Kalba–Narym granitic batholith, Eastern Kazakhstan, Dokl. Earth Sci., 2015, vol. 462, no. 5, pp. 565–569.

    Article  CAS  Google Scholar 

  31. Kotler, P.D., Khromykh, S.V., Kruk, N.N., et al., Granitoids of the Kalba batholith, Eastern Kazakhstan: U-Pb zircon age, petrogenesis and tectonic implications, Lithos, 2021, vol. P, pp. 388–389.

    Google Scholar 

  32. Leake, B.E., Woolley, A., Charles, E.S., and Birch, W., Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names, Am. Mineral., 1997, vol. 82, pp. 1019–1037.

    CAS  Google Scholar 

  33. Levashova, E.V., Skublov, S.G., Oitseva, T.A., et al., First age and geochemical data on zircon from riebeckite granites of the Verkhnee Espe rare earth–rare metal deposit, East Kazakhstan, Geochem. Int., 2022, vol. 67, no. 1, pp. 1–15.

    Article  Google Scholar 

  34. Li, X. and Zhang, C., Machine learning thermobarometry for biotite-bearing magmas, J. Geophys. Res.: Solid Earth, 2023, vol. 127. e2022JB024137. https://doi.org/10.1029/2022JB024137

  35. Lopatnikov, V.V., Izokh, E.P., Ermolov, P.V., et al., Magmatizm i rudonosnost' Kalba-Narymskoi zony Vostochnogo Kazakhstana (Magmatism and Ore Potential of the Kalba–Narym Zone of Eastern Kazakhstan), Moscow: Nauka, 1982.

  36. Ludwig, K.R., Isoplot 3.00: a Geochronological Toolkit for Microsoft Excel, Berkeley: Geochronology Center, 2003.

    Google Scholar 

  37. Nikolaeva, I.V., Palessky, S.V., Chirko, O.S., and Chernonozhkin, S.M., ICP-MS determination of major and trace elements in silicate rocks after fusion with LiBO2, Analitika Kontrol’, 2012, vol. 16, no. 2, pp. 134-142.

    Google Scholar 

  38. Patiño Douce, A.E., What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc., London, Spec. Publ., 1999, vol. 168.

  39. Pearce, J.A. and Norry, M.J., Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks, Contrib. Mineral. Petrol., 1979, vol. 69, pp. 33–47.

    Article  CAS  Google Scholar 

  40. Pearce, J.A., Harris, N.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  CAS  Google Scholar 

  41. Renna, M.R., Tribuzio, R., and Tiepolo, M., Interaction between basic and acid magmas during the latest stages of the post-collisional Variscan evolution: clues from the gabbro-granite association of Ota (Corsica–Sardinia batholith), Lithos, 2006, vol. 90, nos. 1–2, pp. 92–110. https://doi.org/10.1016/j.lithos.2006.02.003

    Article  CAS  Google Scholar 

  42. Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., et al., Priroda i modeli metamorfizma (Nature and Models of Metamorphism), Novosibirsk: SO RAN, 2017.

  43. Rickwood, P.C., Boundary lines within petrologic diagrams which use oxides of major and minor elements, Lithos, 1989, vol. 22, pp. 247–263.

    Article  CAS  Google Scholar 

  44. Rieder, M., Cavazzini, G., D’Yakonov, Y.S., et al., Nomenclature of the micas, Can. Mineral., 1998, vol. 36, pp. 905–912.

    CAS  Google Scholar 

  45. Rosen, O.M. and Fedorovsky, V.S., Kollizionnye granitoidy i rassloenie zemnoi kory (primery kainozoiskikh, paleozoiskikh i proterozoiskikh kollizionnykh sistem) (Collisional Granitoids and Layered Earth’s Crust: Evidence from Cenozoic, Paleozoic, and Proterozoic Collisional Systems), Moscow: Nauchnyi mir, 2001.

  46. Sen, G., Petrology. Principles and Practice, Berlin–Heidelberg: Springer-Verlag, 2014.

    Book  Google Scholar 

  47. Sharpenok, L.N., Kostin, A.E., Kukharenko, E.A., TAS-diagram total alkali–silica for chemical classification and identification of plutonic rocks, Regional. Geol. Metallogen., 2013, no. 56, pp. 40–50.

  48. Shcherba, G.N., D’yachkov, B.A., Nakhtigal, G.P., Zharma-Saurskii Geotektonogen (Zharma–Saur Geotechnogen), Alma-Ata: Nauka, 1976.

  49. Slama, J., Kosler, J., Condond. J., et al., Plesovice zircon—a new natural reference material for u-pb and hf isotopic microanalysis, Chem. Geol., 2008, vol. 249, nos. 1–2, pp. 1–35.

    Article  CAS  Google Scholar 

  50. Steager, R.H. and Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geo-cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.

    Article  Google Scholar 

  51. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London: Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  52. Travin, A.V., Yudin, D.S., Vladimirov, A.G., et al., Thermochronology of the Chernorud Granulite Zone, Ol’khon Region, Western Baikal Area, Geochem. Int., 2009, vol. 47, no. 11, pp. 1107–1124.

    Article  Google Scholar 

  53. Tsygankov, A.A., Khubanov, V.B., Travin, A.V., et al., Late Paleozoic gabbroids of western Transbaikalia: U-Pb and Ar-Ar isotopic ages, composition, and petrogenesis, Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 790–808.

    Article  Google Scholar 

  54. Tsygankov, A.A., Khubanov, V.B., Udoratina, O.V., et al., Alkaline granitic magmatism of the western Transbaikalia: petrogenetic and geodynamic implications from U-Pb isotopic-geochronological data, Lithos, 2021, vol. 390-391, p. 106098.

    Article  CAS  Google Scholar 

  55. Vielzeuf, D. and Montel, J.M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships, Contrib. Mineral. Petrol., 1994, vol. 117, pp. 375–393.

    Article  CAS  Google Scholar 

  56. Vladimirov, A.G., Kruk, N.N., Khromykh, S.V., et al., Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 468–479.

    Article  Google Scholar 

  57. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  CAS  Google Scholar 

  58. Xu, Y-G., Wei, X., Luo, Z-Y., et al., The early permian tarim large igneous province: main characteristics and a plume incubation model, Lithos, 2014, vol. 204, pp. 20–35.

    Article  CAS  Google Scholar 

  59. Yarmolyuk V.V., Kozlovsky, A.M., and Kuzmin, M.I., Zoned magmatic areas and anorogenic batholith formation in the Central Asian Orogenic Belt (by the example of the Late Paleozoic Khangai magmatic area), Russ. Geol. Geophys., 2016a, vol. 57, no. 3, pp. 357–370.

    Article  Google Scholar 

  60. Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., et al., Composition, sources, and geodynamic nature of giant batholiths in Central Asia: evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area, Petrology, 2016b, vol. 24, no. 5, pp. 433–461.

    Article  CAS  Google Scholar 

  61. Yarmolyuk, V.V., Kuzmin, M.I., and Ernst, R.E., Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt, J. Asian Earth Sci., 2014, vol. 93, pp. 158–179.

    Article  Google Scholar 

  62. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithosphere Plates of the USSR Territory), Moscow: Nedra, 1990.

Download references

ACKNOWLEDGMENTS

We are grateful to O.N. Kuzmina for help with organization of field works in the Republic of Kazakhstan. N.G. Karmanova, I.V. Nikolaeva, and S.V. Palessky are thanked for the determination of rock composition, and N.G. Soloshenko, for the determination of Nd isotope composition.

Funding

Generalization and analysis of obtained materials were made in the framework of the government-financed program of the Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences. Petrographic studies, analysis of major and trace elements were supported by the Russian Science Foundation (project no. 21-17-00175). U-Pb and Ar-Ar isotope dating was supported by the Russian Science Foundation (project no. 22-77-00061), analysis of Rb-Sr and Sm-Nd isotope composition was carried out in the framework of the grant from the President of the Russian Federation (MK-1870.2022.1.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Kotler.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotler, P.D., Khromykh, S.V., Zakharova, A.V. et al. Model of the Formation of Monzogabbrodiorite–Syenite–Granitoid Intrusions by the Example of the Akzhailau Massif (Eastern Kazakhstan). Petrology 32, 179–200 (2024). https://doi.org/10.1134/S086959112402005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959112402005X

Keywords:

Navigation