Skip to main content
Log in

Crystal Size Distribution as a Key to Understanding Protocumulus Evolution in Layered Intrusions: Experiments, Calculations, and Practice of CSD Extraction

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper provides a review of calculations and experimental approaches to reproducing three types of crystal size distributions (log-linear, bimodal, lognormal CSD) and systematizes publications on CSD data in rocks of ten known layered massifs. For a more detailed discussion, the results for plagiodunite samples from the Yoko-Dovyren massif, northern Baikal region, Russia, harzburgite from the marginal zone of the Monchegorsk pluton, and urtites from the Lovozero intrusion, Murmansk region, Russia, were selected. Possible causes and scenarios for the formation of three types of CSD established for these intrusive objects are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Supplementary materials for the Russian and English versions of this paper are available for the authorized reader at https://elibrary.ru/ and http://link.springer.com/ and include: Supplementary 1, ESM_1.png for sample 07DV124-12; Supplementary 2, ESM_2.png for sample 09DV501-54; Supplementary 3, ESM_3.png for sample 09DV501-59; Supplementary 4, ESM_4.png for sample 18MP03-2-2; Supplementary 5, ESM_5.png for sample TTL11-3; Supplementary 6, ESM_6.png for sample TTL11-5. The digitization of olivine and nepheline is given in png format. Image resolution is 4000/inch, which allows you to extract information about the actual size of the polygons.

REFERENCES

  1. Andrews, B.J. and Befus, K.S., Supersaturation nucleation and growth of plagioclase: a numerical model of decompression-induced crystallization, Contrib. Mineral. Petrol., 2020, vol. 175, no. 3, pp. 1–20. https://doi.org/10.1007/s00410-020-1660-9

    Article  Google Scholar 

  2. Annen, C., From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust, Earth Planet. Sci. Lett., 2009, vol. 284, nos. 3–4, pp. 409–416. https://doi.org/10.1016/j.epsl.2009.05.006

    Article  Google Scholar 

  3. Ariskin, A.A. and Barmina, G.S., Modelirovanie fazovykh ravnovesii pri kristallizatsii bazal’tovykh magm (Modeling of Phase Equilibria during Crystallization of Basaltic Magmas), Moscow: Nauka, 2000.

  4. Ariskin, A.A., Kostitsyn, Y.A., Konnikov, E.G., et al., Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic, Geochem. Int., 2013, vol. 51, pp. 859–875. https://doi.org/10.1134/S0016702913110025

    Article  Google Scholar 

  5. Ariskin, A., Danyushevsky, L., Nikolaev, G., et al., The Dovyren intrusive complex (southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility, Lithos, 2018, vol. 302–303, pp. 242–262. https://doi.org/10.1016/j.lithos.2018.01.001

    Article  Google Scholar 

  6. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., and Barmina, G.S., Updated COMAGMAT-5: modeling the effects of sulfide precipitation in parallel to the crystallization of alumino-chromian spinel,” Petrology, 2023, vol. 31, no. 5, pp. 558–576.

    Article  Google Scholar 

  7. Armienti, P. and Tarquini, S., Power law olivine crystal size distributions in lithospheric mantle xenoliths, Lithos, 2002, vol. 65, nos. 3–4, pp. 273–285. https://doi.org/10.1016/S0024-4937(02)00195-0

    Article  Google Scholar 

  8. Arzamastsev, A.A., Unikal’nye Paleozoiskie intruzii Kol’skogo poluostrova (Unique Paleozoic Intrusions of the Kola Peninsula), Apatity: Geol. Inst. Kol’sk. Nauchn. Ts., 1994, p. 79.

  9. Blow, K.E., Quigley, D., and Sosso, G.C., The seven deadly sins: when computing crystal nucleation rates, the devil is in the details, J. Chem. Phys., 2021, vol. 155, no. 4, p. 040901. https://doi.org/10.1063/5.0055248

    Article  Google Scholar 

  10. Boorman, S., Boudreau, A., and Kruger, F.J., The lower zone-critical zone transition of the bushveld complex: à quantitative textural study, J. Petrol., 2004, vol. 45, no. 6, pp. 1209–1235. https://doi.org/10.1093/petrology/egh011

    Article  Google Scholar 

  11. Brugger, C.R. and Hammer, J.E., Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma, Earth Planet. Sci. Lett., 2010, vol. 300, nos. 3–4, pp. 246–254. https://doi.org/10.1016/j.epsl.2010.09.046

    Article  Google Scholar 

  12. Bussen, I.V. and Sakharov, A.S., Petrologiya Lovozerskogo shchelochnogo massiva (Petrology of the Lovozero Alkaline Massif), Leningrad: Nauka, 1972.

  13. Cashman, K.V., Relationship between plagioclase crystallization and cooling rate in basaltic melts, Contrib. Mineral. Petrol., 1993, vol. 113, pp. 126–142. https://doi.org/10.1007/BF00320836

    Article  Google Scholar 

  14. Cashman, K.V. and Marsh, B.D., Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi Lava Lake, Contrib. Mineral. Petrol., 1988, vol. 99, no. 3, pp. 292–305. https://doi.org/10.1007/BF00375363

    Article  Google Scholar 

  15. Chashchin, V.V., Bayanova, T.B., Savchenko, E.E., et al., Petrogenesis and age of rocks from the lower zone of the Monchetundra mafic platinum-bearing massif, Kola Peninsula, Petrology, 2020, vol. 28, no. 2, pp. 151–182.

    Article  Google Scholar 

  16. Da Silva, M.M., Holtz, F., and Namur, O., Crystallization experiments in rhyolitic systems: the effect of temperature cycling and starting material on crystal size distribution, Am. Mineral., 2017, vol. 102, no. 11, pp. 2284–2294. https://doi.org/10.1515/9781400854493.419

    Article  Google Scholar 

  17. Dowty, E., Crystal growth and nucleation theory and the numerical simulation of igneous crystallization, Physics of Magmatic Processes, Princeton: University Press, 1980, pp. 419–485. https://doi.org/10.1515/9781400854493.419

    Book  Google Scholar 

  18. Eberl, D.D., Drits, V.A., and Srodon, J., Deducing growth mechanisms for minerals from the shapes of crystal size distributions, Am. J. Sci., 1998, vol. 298, no. 6, pp. 499–533. https://doi.org/10.2475/ajs.298.6.499

    Article  Google Scholar 

  19. Féménias, O., Coussaert, N., Brassinnes, S., et al., Emplacement processes and cooling history of layered cyclic unit II-7 from the Lovozero alkaline massif (Kola Peninsula, Russia), Lithos, 2005, vol. 83, nos. 3–4, pp. 371–393. https://doi.org/10.1016/j.lithos.2005.03.012

    Article  Google Scholar 

  20. Frenkel’, M.Ya., Teplovaya i khimicheskaya dinamika vnutrikamernoi differentsiatsii bazitovykh magm (Thermal and Chemical Dynamics of Intrachamber Differentiation of Mafic Magmas), Moscow: Nauka, 1995.

  21. Frenkel’, M.Ya., Yaroshevsky, A.A., Ariskin, A.A., et al., Dinamika vnutrikamernoi differentsiatsii bazitovykh magm (Dynamics of Intrachamber Differentiation of Mafic Magmas), Moscow: Nauka, 1998.

  22. Gerasimovskii, V.I., Balashov, Yu.A., Volkov, V.P., et al., Geokhimiya Lovozerskogo shchelochnogo massiva (Geochemistry of the Lovozero Alkaline Massif), Moscow: Nauka, 1966.

  23. Godel, L.M., Barnes, S.J., and Barnes, S., Deposition computed mechanisms of magmatic sulphide liquids: evidence from high-resolution X-ray tomography and trace element chemistry of komatiite-hosted disseminated sulphides, J. Petrol., 2013, vol. 54, no. 7, pp. 1455–1481. https://doi.org/10.1093/petrology/egt018

    Article  Google Scholar 

  24. Hersum, T.G. and Marsh, B.D., Igneous microstructures from kinetic models of crystallization, J. Volcanol. Geotherm. Res., 2006, vol. 154, nos. 1–2, pp. 34–47. https://doi.org/10.1016/j.jvolgeores.2005.09.018

    Article  Google Scholar 

  25. Higgins, M.D., Measurement of crystal size distributions, Am. Mineral., 2000, vol. 85, no. (9), pp. 1105–1116. https://doi.org/10.2138/am-2000-8-901

  26. Higgins, M.D., A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening, Contrib. Mineral. Petrol., 2002, vol. 144, no. 3, pp. 314–330. https://doi.org/10.1007/s00410-002-0399-9

    Article  Google Scholar 

  27. Higgins, M.D., Quantitative Textural Measurements in Igneous and Metamorphic Petrology, Cambridge: University Press, 2006. https://doi.org/10.1017/CBO9780511535574

  28. Hort, M. and Spohn, T., Crystallization calculations for a binary melt cooling at constant rates of heat removal: implications for the crystallization of magma bodies, Earth Planet. Sci. Lett., 1991, vol. 107, nos. 3–4, pp. 463–474. https://doi.org/10.1016/0012-821X(91)90093-W

    Article  Google Scholar 

  29. Hoshide, T., Obata, M., and Akatsuka, T., Crystal settling and crystal growth of olivine in magmatic differentiation - the Murotomisaki gabbroic complex, Shikoku, Japan, J. Mineral. Petrol. Sci., 2006, vol. 101, no. 5, pp. 223–239. https://doi.org/10.2465/jmps.101.223

    Article  Google Scholar 

  30. Hunt, E.J., Finch, A.A., and Donaldson, C.H., Layering in peralkaline magmas, Ilimaussaq complex, S Greenland, Lithos, 2017, vol. 268–271, pp. 1–15. https://doi.org/10.1016/j.lithos.2016.10.023

    Article  Google Scholar 

  31. Karykowski, B.T., Maier, W.D., Groshev, N.Y., et al., Critical controls on the formation of contact-style PGE-Ni cu mineralization: evidence from the Paleoproterozoic Monchegorsk complex, Kola region, Russia, Econ. Geol., 2018, vol. 113, no. 4, pp. 911–935.

    Article  Google Scholar 

  32. Kirkpatrick, R.J., Towards a kinetic model for the crystallization of magma bodies, J. Geophys. Res., 1976, vol. 81, no. 14, pp. 2565–2571. https://doi.org/10.1029/jb081i014p02565

    Article  Google Scholar 

  33. Kirkpatrick, R.J., Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii, GSA Bull., 1977, vol. 88, no. 1, pp. 78–84. https://doi.org/10.1130/0016-7606(1977)88<78:NAGOPM>2.0.CO;2

    Article  Google Scholar 

  34. Kislov, E.V., Ioko-Dovyrenskii rassloennyi massiv (Yoko–Dovyren Layered Massif), Ulan-Ude: Izd. Buryatskogo NTs, 1998.

  35. Kolmogorov, A.N., On statistical theory of metal crystallization, Izv. AN SSSR. Ser. Matemat., 1937, vol. 1, no. 3, pp. 355–359.

    Google Scholar 

  36. Lifshitz, I.M. and Slyozov, V.V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 1961, vol. 19, nos. 1–2, pp. 35–50. https://doi.org/10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  37. Magee, C., O’Driscoll, B., and Chambers, A.D., Crystallization and textural evolution of a closed-system magma chamber: insights from a crystal size distribution study of the Lilloise layered intrusion, east greenland, Geol. Mag., 2010, vol. 147, no. 3, pp. 363–379. https://doi.org/10.1017/S0016756809990689

    Article  Google Scholar 

  38. Mao, Y.J., Barnes, S.J., Duan, J., et al., Morphology and particle size distribution of olivines and sulphides in the Jinchuan Ni–Cu sulphide deposit: evidence for sulphide percolation in a crystal mush, J. Petrol., 2018, vol. 59, no. 9, pp. 1701–1730. https://doi.org/10.1093/petrology/egy077

    Article  Google Scholar 

  39. Mao, Y.J., Barnes, S.J., Qin, K.Z., et al., Rapid orthopyroxene growth induced by silica assimilation: constraints from sector-zoned orthopyroxene, olivine oxygen isotopes and trace element variations in the Huangshanxi Ni–Cu deposit, northwest China, Contrib. Mineral. Petrol., 2019, vol. 174, p. 33. https://doi.org/10.1007/s00410-019-1574-6

    Article  Google Scholar 

  40. Marsh, B.D., Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization - I. Rheory, Contrib. Mineral. Petrol., 1988, vol. 99, no. 3, pp. 277–291. https://doi.org/10.1007/BF00375362

    Article  Google Scholar 

  41. Marsh, B.D., On the interpretation of crystal size distributions in magmatic systems, J. Petrol., 1998, vol. 39, no. 4, pp. 553–599. https://doi.org/10.1093/petroj/39.4.553

    Article  Google Scholar 

  42. McDonald, M.A., Bommarius, A.S., Grover, M.A., et al., Direct observation of growth rate dispersion in the enzymatic reactive crystallization of ampicillin, Processes, 2019, vol. 7, no. (6), pp. 1–17. https://doi.org/10.3390/PR7060390

  43. Melnik, O.E., Blundy, J.D., Rust, A.C., et al., Subvolcanic plumbing systems imaged through crystal size distributions, Geology, 2011, vol. 39, no. 4, pp. 403–406. https://doi.org/10.1130/G31691.1

    Article  Google Scholar 

  44. Mikhailova, J.A., Ivanyuk, G.Y., Kalashnikov, A.O., et al., Petrogenesis of the eudialyte complex of the Lovozero alkaline massif (Kola Peninsula, Russia), Minerals, 2019, vol. 9, no. (10), p. 581. https://doi.org/10.3390/min9100581

  45. Mills, R.D. and Glazner, A.F., Experimental study on the effects of temperature cycling on coarsening of plagioclase and olivine in an alkali basalt, Contrib. Mineral. Petrol., 2013, vol. 166, no. 1, pp. 97–111. https://doi.org/10.1007/s00410-013-0867-4

    Article  Google Scholar 

  46. Mollard, E. Martel, C., and Le Trong, et al., Theoretical models of decompression-induced plagioclase nucleation and growth in hydrated silica-rich melts, Front. Earth Sci., 2020, vol. 8, pp. 1–15. https://doi.org/10.3389/feart.2020.00203

    Article  Google Scholar 

  47. Mydlarz, J., An exponential-hyperbolic crystal growth rate model, Cryst. Res. Technol., 1995, vol. 30, no. 6, pp. 747–761. https://doi.org/10.1002/crat.2170300604

    Article  Google Scholar 

  48. O’Driscoll, B., Donaldson, C.H., Troll, V.R., et al., An origin for harrisitic and granular olivine in the Rum layered suite, NW Scotland: a crystal size distribution study, J. Petrol., 2007, vol. 48, no. 2, pp. 253–270. https://doi.org/10.1093/petrology/egl059

    Article  Google Scholar 

  49. Orlando, A., D’Orazio, M., Armienti, P., et al., Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy), Eur. J. Mineral., 2008, vol. 20, pp. 653–664. https://doi.org/10.1127/0935-1221/2008/0020-1841

    Article  Google Scholar 

  50. Park, Y. and Hanson, B., Experimental investigation of ostwald-ripening rates of forsterite in the haplobasaltic system, J. Volcanol. Geotherm. Res., 1999, vol. 90, nos. 1–2, pp. 103–113. https://doi.org/10.1016/S0377-0273(99)00023-2

    Article  Google Scholar 

  51. Perchuk, L.L., Pyroxene barometer and “pyroxene geotherms”, Dokl. Akad. Nauk SSSR, 1977, vol. 233, no. 6, pp. 1196–1200.

    Google Scholar 

  52. Randolph, A.D. and Larson, M.A., Theory of Particulate Processes, New York: Academic Press, 1971.

    Google Scholar 

  53. Randolph, A.D. and White, E.T., Modelling size dispersion in the prediction of crystal size distribution, Chem. Eng. Sci., 1977, vol. 32, pp. 1067–1076.

    Article  Google Scholar 

  54. Rassloennye intruzii Monchegorskogo rudnogo raiona: petrologiya, orudenenie, izotopiya, glubinnoe stroenie (Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopy, and Deep Structure), Mitrofa-nov, F.P, Smol’kin, V.F, Eds., Apatity: KNTs RAS, 2004, vol. 1.

  55. Resmini, R.G., Modeling of crystal size distributions (CSDs) in sills, J. Volcanol. Geotherm. Res., 2007, vol. 161, nos. 1–2, pp. 118–130. https://doi.org/10.1016/j.jvolgeores.2006.06.023

    Article  Google Scholar 

  56. Salisbury, M.J., Bohrson, W.A., Clynne, M.A., et al., Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA, J. Petrol., 2008, vol. 49, no. 10, pp. 1755–1780. https://doi.org/10.1093/petrology/egn045

    Article  Google Scholar 

  57. Simakin, A.G. and Bindeman, I.N., Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems, J. Volcanol. Geotherm. Res., 2008, vol. 177, no. 4, pp. 997–1010. https://doi.org/10.1016/j.jvolgeores.2008.07.012

    Article  Google Scholar 

  58. Simakin, A.G., Trubitsyn, V.P., and Kharybin, E.V., The size and depth distribution of crystals settling in a solidifying magma chamber, Izv. Phys. Solid Earth, 1998, no. 8, pp. 639–646.

  59. Simakin, A.G., Devyatova, V.N., and Nekrasov, A.N., Crystallization of Cpx in the Ab–Di system under the oscillating temperature: contrast dynamic modes at different periods of oscillation, Advances in Experimental and Genetic Mineralogy, Litvin, Y. and Safonov, O., Springer Mineralogy, Springer Cham, 2020. https://doi.org/10.1007/978-3-030-42859-4_5

  60. Simone, C., Mattia de', M.V., and Patrizia, L., CrystalMom: a new model for the evolution of crystal size distributions in magmas with the quadrature-based method of moments, Contrib. Mineral. Petrol., 2017, vol. 172, nos. 11–12. https://doi.org/10.1007/s00410-017-1421-6

  61. Smol’kin, V.F., Mokrushin, A.V., Bayanova, T.B., et al., Magma conduits in the Monchegorsk ore district: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia), Zap. Gorn. Inst., 2022, vol. 255, pp. 1–14.

    Google Scholar 

  62. Sosso, G.C., Chen, J., Cox, S.J., et al., Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations, Chem. Rev., 2016, vol. 116, no. (12), pp. 7078–7116. https://doi.org/10.1021/acs.chemrev.5b00744

  63. Špillar, V. and Dolejš, D., Calculation of time-dependent nucleation and growth rates from quantitative textural data: inversion of crystal size distribution, J. Petrol., 2013, vol. 54, no. 5, pp. 913–931. https://doi.org/10.1093/petrology/egs091

    Article  Google Scholar 

  64. Špillar, V. and Dolejš, D., Kinetic model of nucleation and growth in silicate melts: implications for igneous textures and their quantitative description, Geochim Cosmochim. Acta, 2014, vol. 131, pp. 164–183. https://doi.org/10.1016/j.gca.2014.01.022

    Article  Google Scholar 

  65. Spohn, T., Hort, M., and Fischer, H., Numerical simulation of the crystallization of multicomponent melts in thin dikes or sills. 1. The liquidus phase, J. Geophys. Res., 1988, vol. 93, no. B5, pp. 4880–4894. https://doi.org/10.1029/JB093iB05p04880

    Article  Google Scholar 

  66. Tarquini, S. and Favalli, M., A microscopic information system (MIS) for petrographic analysis, Comp. Geosci., 2010, vol. 36, no. 5, pp. 665–674. https://doi.org/10.1016/j.cageo.2009.09.017

    Article  Google Scholar 

  67. Toramaru, A., Model of nucleation and growth of crystals in cooling magmas, Contrib. Mineral. Petrol., 1991, vol. 108, nos. 1–2, pp. 106–117. https://doi.org/10.1007/BF00307330

    Article  Google Scholar 

  68. Vona, A., Romano, C., Dingwell, D.B., et al., The rheology of crystal-bearing basaltic magmas from Stromboli and Etna, Geochim. Cosmochim. Acta, 2011, vol. 75 P, pp. 3214–3236. https://doi.org/10.1016/j.gca.2011.03.031

  69. Williams, E., Boudreau, A.E., Boorman, S., et al., Textures of orthopyroxenites from the Burgersfort bulge of the eastern Bushveld Complex, republic of South Africa, Contrib. Mineral. Petrol., 2006, vol. 151, no. 4, pp. 480–492. https://doi.org/10.1007/s00410-006-0072-9

    Article  Google Scholar 

  70. Yao, Z.Sen., Qin, K., and Zhang, XueS., Chao. Kinetic processes for plastic deformation of olivine in the Poyi ultramafic intrusion, NW China: insights from the textural analysis of a ~1700 m fully cored succession, Lithos, 2017, vol. 284-285, pp. 462–476. https://doi.org/10.1016/j.lithos.2017.05.002

    Article  Google Scholar 

  71. Zieg, M.J. and Marsh, B.D., Crystal size distributions and scaling laws in the quantification of igneous textures, J. Petrol., 2002, vol. 43, no. 1, pp. 85–101. https://doi.org/10.1093/petrology/43.1.85

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E.V. Kislov for assistance and consultations during the fieldwork at the Yoko-Dovyren layered massif. V.F. Smol’kin is thanked for providing materials for this study and help during the fieldwork at the Monchegorsk massif and during the processing of the materials, and A.Yu Bukharev for providing us with an algorithm for aligning images. We are indebted to S. Tarquini of the University of Pisa for valuable consultations early in the course of this study. We are particularly thankful to A.G. Simakin for the most valuable comments provided during all stages of this study and for reviewing the manuscript, which allowed us to significantly improve it.

Funding

This study was carried out under government-financed research project for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sobolev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, S.N., Ariskin, A.A., Nikolaev, G.S. et al. Crystal Size Distribution as a Key to Understanding Protocumulus Evolution in Layered Intrusions: Experiments, Calculations, and Practice of CSD Extraction. Petrology 31, 648–663 (2023). https://doi.org/10.1134/S0869591123060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123060097

Keywords:

Navigation