Skip to main content
Log in

Formation Stages and Conditions of Carbonate–Silicate Veins and Their Wall-Rock Aureoles in the Early Proterozoic Complexes of the Belomorian Mobile Belt, Northern Karelia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Archean gneisses cropping out on islands in the White Sea and its coast in northern Karelia host widespread bodies of Early Proterozoic metamorphosed gabbroids. Carbonate–silicate veins hosted in these metabasite bodies and constrained to their contacts with the gneisses contain Fe–Cu sulfides, whose concentrations occasionally reach economic levels. The dominant gangue minerals are plagioclase, quartz, carbonates, and chlorite. The formation stages of the veins correspond to the transition from the early quartz–plagioclase to late quartz–carbonate associations with chlorite and sulfides. The early (high-temperature) stage is discernible in the wall-rock amphibolite aureoles, which were formed at temperature of about 550–650°C (estimates by the TWQ method). This stage corresponds to the quartz–plagioclase association in the marginal zones of the veins. The transition to the late stage and the formation of veined quartz–carbonate (±biotite) associations occurred at temperatures of 540°C and lower, judging by the calcite–dolomite associations. The further development of the quartz–chlorite–carbonate and sulfide associations in the veins and wall-rock amphibolites corresponded to a temperature decrease to 350°C and below, as evaluated with the application of chlorite thermometers. The veins and wall-rock amphibolitization may have been induced by metamorphic fluids during the latest retrograde metamorphic stage in the Early Proterozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alm, E. and Sundblad, K., Sveconorwegian polymetallic quartz veins in Sweden, Neues Jahrb. Mineral. Monatsh., 1994, vol. 1994, no. 1, pp. 1–22.

    Google Scholar 

  2. Alm, E., Broman, C., Billström, K., et al., Fluid characteristics and genesis of Early Neoproterozoic orogenic gold–quartz veins in the Harnas area, southwestern Sweden, Econ. Geol., 2003, vol. 98, no. 7, pp. 1311–1328.

    Article  Google Scholar 

  3. Anovitz, L.M. and Essene, E.J., Phase equilibria in the system CaCO3–MgCO3–FeCO3, J. Petrol., 1987, vol. 28, no. 2, pp. 389–415.

    Article  Google Scholar 

  4. Balagansky, V.V., Main Stages of the Tectonic Evolution of the Northeastern Baltic Shield in the Paleoproterozoic, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, St. Petersburg: IGGD RAN, 2002.

  5. Balagansky, V.V., Glaznev V.N., Osipenko L.G., The Early Proterozoic evolution of the northeastern Baltic Shield: a terrane analysis, Geotectonics, 1998, vol. 32, no. 2. pp. 81–92.

    Google Scholar 

  6. Berezin, A.V., Salimgaraeva, L.I., and Skublov, S.G., Evolution of mineral composition during eclogite metamorphism in the Belomorian Mobile Belt: data from Vichennaya Luda Island, Petrology, 2020, vol. 28, no. 1, pp. 73–92.

    Article  Google Scholar 

  7. Berezin, A.V. and Skublov, S.G., Eclogite-like apogabbro rocks in Sidorov and Bolshaya Ileika Islands, Keret Archipelago, White Sea: compositional characteristics, metamorphic age and conditions, Petrology, 2014, vol. 22, no. 3, pp. 234–254.

    Article  Google Scholar 

  8. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, pp. 445–522.

    Article  Google Scholar 

  9. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, pp. 833–855.

    Google Scholar 

  10. Bibikova, E., Skiöld, T., Bogdanova, S., et al., Titanite–rutile thermochronometry across the boundary between the Archaean craton in Karelia and the Belomorian mobile belt, eastern Baltic Shield, Precambrian Res., 2001, vol. 105, nos. 2–4, pp. 315–330.

    Article  Google Scholar 

  11. Bons, P.D., Elburg, M.A., and Gomez-Rivas, E., A review of the formation of tectonic veins and their microstructures, J. Struct. Geol., 2012, vol. 43, pp. 33–62.

    Article  Google Scholar 

  12. Bourdelle, F., Parra, T., Chopin, C., and Beyssac, O., A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions, Contrib. Mineral. Petrol., 2013, vol. 165, no. 4, pp. 723–735.

    Article  Google Scholar 

  13. Cathelineau, M. and Nieva, D., A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system, Contrib. Mineral. Petrol., 1985, vol. 91, no. 3, pp. 235–244.

    Article  Google Scholar 

  14. Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., and Gilbert, S., Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: a LA-ICP-MS study bornite mineral chemistry, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 21, pp. 6473–6496.

    Article  Google Scholar 

  15. Glebovitsky, V.A. and Smolkin, V.F., Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), St. Petersburg: Nauka, 2005.

  16. Holland, T. and Blundy, J., Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry, Contrib. Mineral. Petrol., 1994, vol. 116, no. 4, pp. 433–447.

    Article  Google Scholar 

  17. Korzhinskii, D.S., Acid-basic interaction in the mineral-forming systems, Teoriya protsessov mineraloobrazovaniya: izbrannye trudy (Theory of Mineral Formation: Selected Paper), Moscow: Nauka, 1994.

    Google Scholar 

  18. Kosoi, L.A., Geological-petrographic overview of the Keret’ area of North Karelia, Uch. Zap. Lening. Gos. Univ., 1938, no. 26, pp. 65–99.

  19. Kotel’nikov, A.R., Suk, N.I., Kotel’nikova, Z.A., et al., Mineral geothermometers for low-temperature parageneses, Vestn. ONZ RAN, 2012, vol. 4, pp. 1–4.

    Google Scholar 

  20. Kozlovskii, V.M., Geology and Metamorphism of the Metamafic Rocks in Ductile Flow zones of the Belomorian Mobile Belt, North Karelia, Doctoral (Geol.-Min.) Dissertaion, Moscow: IGEM RAN, 2021.

    Google Scholar 

  21. Kozlovskii, V.M. and Aranovich, L.Ya., Petrology and thermobarometry of eclogite rocks in the Krasnaya Guba Dike Field, Belomorian Mobile Belt, Petrology, 2010, vol. 18, no. 1, pp. 27–49.

    Article  Google Scholar 

  22. Kozlovskii, V.M., Travin, V.V., Savatenkov, V.M., et al., Thermobarometry of Paleoproterozoic metamorphic events in the central Belomorian Mobile Belt, Northern Karelia, Russia, Petrology, 2020, vol. 28, no. 2, pp. 183–206.

    Article  Google Scholar 

  23. Kozlovskii, V.M., Travin, V.V., Zinger, T.F., et al., Static and dynamic metamorphism of mafic rocks of the Belomorian Belt: Evidence from the Pongoma–Navolok massif and its metamorphic surrounding, Petrologiya i geodinamika geologicheskikh protsessov (Petrology and Geodynamics of Geological Processes), 2021, vol. 2, pp. 28–31.

    Google Scholar 

  24. Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of amphiboles; report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Mineral. Mag., 1997, vol. 61, no. 405, pp. 295–310.

    Article  Google Scholar 

  25. Lebedev, V.I., Mineralogy of quartz–carbonate veins of North Karelia, Izv. Karelo-Finskogo Fil. AN SSSR, 1950, no. 1, pp. 3–36.

  26. Loidolt, L.H., Quartz-Feldspar-Carbonate Bodies of the Carrizo Mountains, Texas (The University of Arizona, 1970).

    Google Scholar 

  27. Marsala, A., Wagner, T., and Walle, M., Late-metamorphic veins record deep ingression of meteoric water: a LA-ICP-MS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany, Chem. Geol., 2013, vol. 351, pp. 134–153.

    Article  Google Scholar 

  28. Nikitin, Yu.V., Molibdenitovoe orudenenie v zhilakh Severnoi Karelii (Molybdenite Mineralization in Veins of North Karelia), Moscow–Leningrad: Izd-vo AN SSSR, 1960, vol. 9, pp. 150–157.

    Google Scholar 

  29. Raj, R.M. and Kumar, S.N., Characterisation of selected sulphides associated with the granitic pegmatites of Nagamalai–Pudukottai area, Madurai district, Tamil Nadu, India, J. Appl. Geochem., 2015, vol. 17, no. 4, pp. 444–450.

    Google Scholar 

  30. Raj, R.M. and Kumar, S.N., Geothermobarometry of granitic pegmatites of Nagamalai–Pudukottai area, Madurai Block, South India, Earth Sci. India, 2018, vol. 11, pp. 168–182.

    Google Scholar 

  31. Sankar, D.B. and Prasad, K.S.S., Petrology of Garimanipenta (copper mineralisation area), Nellore District, Andhra Pradesh, South India—a case study, Int. J. Sci. Environ. Technol., 2012, vol. 1, no. 4, pp. 247–259.

    Google Scholar 

  32. Shurkin K.A. Geology and Petrography of the Archean Gabbro–Labradorites of Karelia, Geologiya i absolyutnyi vozrast dokembriya Baltiiskogo shchita i Vostochnoi Sibiri (Geology and Absolute Age of Precambrian of the Baltic Shield and East Siberia), Shurkin, K.A, Duk, V.L, Mitrofanov, F.P, Eds., Moscow–Leningrad, 1960, pp. 120–149.

  33. Skublov S.G., Berezin A.V., Mel’nik A.E. i dr. Protolith Age of Eclogites from the Southern Part of Pezhostrov Island, Belomorian Belt: Protolith of Metabasites as Indicator of Eclogitization Time, Petrology, 2016, vol. 24, no. 6, pp. 594–607.

    Article  Google Scholar 

  34. Skublov, S.G., Mel’nik, A.E., Marin, Yu.B., et al., New data on the age (U–Pb, Sm–Nd) of metamorphism and a protolith of eclogite-like rocks from the Krasnaya Guba Area, Belomorian Belt, Dokl. Earth Sci., 2013, vol. 453, no. 3, pp. 1158–1164.

    Article  Google Scholar 

  35. Slabunov, A.I., Geologiya i geodinamika arkheiskikh podvizhnyi poyasov na primere Belomorskoi provintsii Fennoskandinavskogo shchita (Geology and Geodynamics of the Archean Mobile Belts: Evidence from the Belomorian Province of the Fennoscandian Shield), Petrozavodsk: KarNTs RAN, 2008.

  36. Slabunov, A.I., Azimov, P.Ya., Glebovitsky, V.A., et al., Archaean and Palaeoproterozoic migmatizations in the Belomorian Province, Fennoscandian Shield: petrology, geochronology, and geodynamic settings, Dokl. Earth Sci., 2016, vol. 467, no. 1, pp. 259–263.

    Article  Google Scholar 

  37. Slabunov, A.I., Balagansky, V.V., and Shchipansky, A.A., Mesoarchean to Paleoproterozoic crustal evolution of the Belomorian Province, Fennoscanidan Shield, and the tectonic setting of eclogites, Russ. Geol. Geophys., 2021, vol. 62, no. 5, pp. 525–677.

    Article  Google Scholar 

  38. Smirnova, V.S. and Solodkaya, R.I., Geologicheskaya karta SSSR masshtaba 1 : 200 000. Seriya Karel’skaya list Q-36XVI. Ob"yasnitel’naya zapiska (Geological Map of the USSR on a Scale 1 : 200 000. Karelian Series, Sheet Q-36XVI. Explanatory Note), Moscow: Gosudarstvennoe nauchno-tekhnicheskoe izd-vo literatury po geologii i okhrane nedr, 1960.

  39. Stepanov, V.S., Osnovnoi magmatizm dokembriya zapadnogo Belomor’ya (Precambrian Mafic Magmatism of the Western Belomorian Belt), Leningrad: Nauka, 1981.

  40. Stepanova, A. and Stepanov, V., Paleoproterozoic mafic dyke swarms of the Belomorian Province, Eastern Fennoscandian shield, Precambrian Res., 2010, vol. 183, no. 3, pp. 602–616.

    Article  Google Scholar 

  41. Stepanova, A.V., Stepanov, V.S., Larionov, A.N., et al., 2.5 Ga gabbro-anorthosites in the Belomorian Province, Fennoscandian Shield: petrology and tectonic setting, Petrology, 2017, vol. 25, no. 6, pp. 566–591.

    Article  Google Scholar 

  42. Stepanova, A.V., Stepanov, V.S., Larionov, A.N., et al., Relicts of Paleoproterozoic lips in the Belomorian Province, Eastern Fennoscandian shield: barcode reconstruction for a deeply eroded collisional orogeny, Geol. Soc. London: Spec. Publ., 2022, vol. 518, no. 1, pp. 101–128.

    Article  Google Scholar 

  43. Warr, L.N., IMA-CNMNC approved mineral symbols, Mineral. Mag., 2021, vol. 85, no. 3, pp. 291–320.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.E. Borisovskii and E.V. Koval’chuk (Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) for conducting microprobe analyses of minerals at the IGEM-ANALITIKA Center for the Collective Use of Analytical Equipment. The authors are thankful to A.L. Perchuk (Moscow State University) and the anonymous reviewer for constructive criticism of the manuscript.

Funding

This study was carried out under a government-financed research project for the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Volkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, I.S., Kozlovskii, V.M. Formation Stages and Conditions of Carbonate–Silicate Veins and Their Wall-Rock Aureoles in the Early Proterozoic Complexes of the Belomorian Mobile Belt, Northern Karelia. Petrology 31, 538–557 (2023). https://doi.org/10.1134/S0869591123050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123050077

Keywords:

Navigation