Skip to main content
Log in

Petrogenesis of the Changlinggang A-type Syenites in the Western South China Block: Implications for Late Cretaceous Tectonic Evolution of the Neo-Tethys

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

It is debated whether Cretaceous magmatism and mineralization in southeastern Yunnan (China) resulted from the subduction of Neo-Tethys or Paleo-Pacific lithosphere. To address this problem, we report whole-rock geochemical and Sr–Nd isotopic compositions and zircon U–Pb ages and Lu–Hf isotopic compositions from the Changlinggang syenites in the southeastern Yunnan Sn mineralization belt, western South China Block. LA–ICP–MS zircon U–Pb dating suggests that syenites were emplaced during the Late Cretaceous (79.2 ± 0.5 Ma). They contain nepheline and aegirine, and have high (K2O + Na2O) contents (16.0–18.6 wt %), K2O/Na2O ratios (0.7–1.7), FeOT/(FeOT + MgO) ratios (0.83–0.97), 104 × Ga/Al ratios (2.3–3.7), and (Zr + Nb + Ce + Y) contents (505–2138 ppm), which are typical of A-type granitoids. The samples have slightly more enriched initial Sr–Nd isotopic compositions than the coeval Jiasha gabbros, with (87Sr/86Sr)i ratios of 0.7088–0.7101 and εNd(Т) values of –7.5 to –6.6. The geochemical data suggest that the Changlinggang syenites were derived by partial melting of enriched lithospheric mantle that had been metasomatized by subducted-sediment-derived melts, followed by crustal assimilation and fractional crystallization of the partial melt during ascent. These results, along with those of previous studies, indicate that Cretaceous magmatism and mineralization in southeastern Yunnan were emplaced in an extensional setting related to subduction of Neo-Tethys lithosphere. Therefore, we propose that the Neo-Tethyan slab was subducted under the western South China Block during the Late Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Bouvier, A., Vervoort, J.D., and Patchett, P.J., The Lu-Hf and Sm-Nd isotopic isotopic composition of CHUR: constraints form unequilibrated chondrites and implications for the bulk composition of terrestrial planet, Earth Planet. Sci. Lett., 2008, vol. 273, pp. 48–57.

    Article  Google Scholar 

  2. Chappell, B.W. and White, A.J.R., I- and S-type granites in the Lachlan Fold Belt, Earth Environ. Sci. Trans. R. Society of Edinb., 1992, vol. 83, pp. 1–26.

    Google Scholar 

  3. Cheng, Y.B. and Mao, J.W., Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting, Lithos, 2010, vol. 120, pp. 258–276.

    Article  Google Scholar 

  4. Cheng, Y.B., Spandler, C., Mao, J.W., and Rusk, B.G., Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: a case of two-stage mixing of crust- and mantle-derived magmas, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 659–676.

    Article  Google Scholar 

  5. Cheng, Y.B., Mao, J.W., and Spandler, C., Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China, Lithos, 2013, vol. 175-176, pp. 213–229.

    Article  Google Scholar 

  6. Creaser, R.A., Price, R.C., and Wormald, R.J., A-type granites revisited: Assessment of a residual-source model, Geology, 1991, vol. 19, pp. 163–166.

    Article  Google Scholar 

  7. Eby, G.N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 1990, vol. 26, pp. 115–134.

    Article  Google Scholar 

  8. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., A geochemical classifcation for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  Google Scholar 

  9. Furman, T. and Graham, D., 1999, Erosion of lithospheric mantle under the East African Rift system: geochemical evidence from the Kivu volcanic province, Lithos, 2001, vol. 48, pp. 237–262.

    Article  Google Scholar 

  10. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., and Shee, S.R., The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 133–147.

    Article  Google Scholar 

  11. Guo, J., Wu, K., Seltmann, R., Zhang, R.Q., Ling, M.X., Li, C.Y., and Sun, W.D., Unraveling the link between mantle upwelling and formation of Sn-bearing granitic rocks in the world-class Dachang tin district, South China, Geol. Soc. Am. Bull., 2022, vol. 134, pp. 1043–1064.

    Article  Google Scholar 

  12. Harris, C., Dreyer, T., and Roux, P.L., Petrogenesis of peralkaline granite dykes of the Straumsvola complex, western Dronning Maud Land, Antarctica, Contrib. Mineral. Petrol., 2018, vol. 173 pp. 8.

    Article  Google Scholar 

  13. Hawkesworth, C.J., Turner, S.P., Mcdermott, F., Peate, D.W., and van Calsteren, P., U-Th isotopes in arc magmas: implications for element transfer from subducted crust, Science, 1997, vol. 276, pp. 555–561.

    Article  Google Scholar 

  14. Hermann, J. and Spandler, C.J., Sediment melts at sub-arc depths: an experimental study, J. Petrol., 2008, vol. 49, pp. 717–740.

    Article  Google Scholar 

  15. Hu, X.M., Garzanti, E., Wang, J.G., Huang, W.T., An, W., and Webb, A., The timing of India-Asia collision onset-Facts, theories, controversies, Earth-Sci. Rev., 2016, vol. 160, pp. 264–299.

    Article  Google Scholar 

  16. Jahn, B.M., Capdevilaa, R., Liub, D., Vernona, A., and Badarch, G., Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth, J. Asian Earth Sci., 2004, vol. 23, pp. 629–653.

    Article  Google Scholar 

  17. Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J., and Yang, W.Z., Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses, Lithos, 2002, vol. 63 pp. 165–187.

    Article  Google Scholar 

  18. Jiang, Y.H., Wang, G.C., Liu, Z., Ni, C.Y., Qing, L., and Zhang, Q., Repeated slab advance-retreat of the Palaeo-Pacific plate underneath SE China, Int. Geol. Rev., 2015, vol. 57, pp. 472–491.

    Article  Google Scholar 

  19. Li, X.L., Mao, J.W., Cheng, Y.B., and Zhang, J., Petrogenesis of the Gaofengshan granite in Gejiu area, Yunnan Province: Zircon U-Pb dating and geochemical constraints, Acta Petrol. Sinica, 2012, vol. 28, pp. 183–198.

    Google Scholar 

  20. Li, K.W., Zhang, Q., Wang, D.P., Cai, Y., and Liu, Y.P., LA-MC-ICP-MS U-Pb geochronology of Cassiterite from the Bainiuchang polymetallic deposit, Yunnan Province, China, Acta Mineral. Sinica, 2013, vol. 33, pp. 203–209.

    Google Scholar 

  21. Li, J.H., Zhang, Y.Q., Dong, S.W., and Johnston, S.T., Cretaceous tectonic evolution of South China: A preliminary synthesis, Earth-Sci. Rev., 2014, vol. 134, pp. 98–136.

    Article  Google Scholar 

  22. Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H., In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard, Chem. Geol., 2008, vol. 257, pp. 34–43.

    Article  Google Scholar 

  23. Liu, H.C., Wang, Y.J., Cawood, P.A., and Guo, X.F., Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks, Geol. Soc. Am. Bull., 2017, vol. 129, pp. 698–714.

    Article  Google Scholar 

  24. Liu, Y.B., Zhang, L.F., Mo, X.X., Santosh, M., Dong, G.C., and Zhou, H.Y., The giant tin polymetallic mineralization in southwest China: Integrated geochemical and isotopic constraints and implications for Cretaceous tectonomagmatic event, Geosci. Front., 2020, vol. 11.

    Google Scholar 

  25. Le Maitre, R.W., Igneous Rocks: A Classification and Glossary of Terms, 2nd Edition, Cambridge: Cambridge Univ., 2002.

    Book  Google Scholar 

  26. Mao, J.W., Ouyang, J.G., Song, S.W., Santosh, M., Yuan, S.D., Zhou, Z.H., Zheng, W., Liu, H., Liu, P., Cheng, Y.B., and Chen, M.H., Geology and Metallogeny of Tungsten and Tin Deposits in China, Soc. Econ. Geol. Spec. Publ., 2019, vol. 22, pp. 411–482.

    Google Scholar 

  27. Metcalfe, I., Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys, J. Asian Earth Sci., 2013, vol. 66, pp. 1–33.

    Article  Google Scholar 

  28. Patiño-Douce, A.E., Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids, Geology, 1997, vol. 25, pp. 743–746.

    Article  Google Scholar 

  29. Patiño-Douce, A.E. and Beard, J.S., Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar, J. Petrol., 1995, vol. 36, pp. 707–738.

    Article  Google Scholar 

  30. Plank, T. and Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 1998, vol. 145, pp. 325–394.

    Article  Google Scholar 

  31. Prouteau, G., Scaillet, B., Pichavant, M., and Maury, R., Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature, 2001, vol. 410, pp. 197–200.

    Article  Google Scholar 

  32. Rapp, R.P. and Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling, J. Petrol., 1995, vol. 36, pp. 891–931.

    Article  Google Scholar 

  33. Reed, W.P., Certificate of Analysis: Standard Reference Materials, 610 and 611, National Institute of Standards and Technology, 1992.

    Google Scholar 

  34. Reichow, M.K., Litvinovsky, B.A., Parrish, R.R., and Saunders, A.D., Multi-stage emplacement of alkaline and peralkaline syenite–granite suites in the Mongolian–Transbaikalian Belt, Russia: Evidence from U-Pb geochronology and whole rock geochemistry, Chem. Geol., 2010, vol. 273, pp. 120–135.

    Article  Google Scholar 

  35. Rudnick, R.L., Gao, S., Composition of the continental crust. In: Treatise on Geochemistry. Volume 3. The Crust, Rudnick R.L., Holland H.D., and Turekian K.K., Eds., Oxford: Elsevier-Pergamum, 2003, vol. 3, pp. 1–64.

  36. Shellnutt, J.G. and Jahn, B.-M., Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: Implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China, Earth Planet. Sci. Lett., 2010, vol. 289, pp. 509–519.

    Article  Google Scholar 

  37. Sisson, T.W., Ratajeski, K., Hankins, W.B., and Glazner, A.F., Voluminous granitic magmas from common basaltic sources, Contrib. Mineral. Petrol., 2005, vol. 148, pp. 635–661.

    Article  Google Scholar 

  38. Skjerlie, K.P. and Johnston, A.D., Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites, Geology, 1992, vol. 20, pp. 263–266.

    Article  Google Scholar 

  39. Stern, R.J. and Bloomer, S.H., Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs, Geol. Soc. Am. Bull., 1992, vol. 104, pp. 1621–1636.

    Article  Google Scholar 

  40. Stolz, A.J., Jochum, K.P., Spettel, B., and Hofmann, A.W., Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts, Geology, 1996, vol. 24, pp. 587–590.

    Article  Google Scholar 

  41. Sun, S.S., and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, In: Magmatism in the Ocean Basins, Saunders, A.D., and Norry, M.J., Eds., Geol. Soc. London, Spec. Publ., 1989, vol. 42, pp. 313–345.

  42. Sun, W.D., Initiation and evolution of the South China Sea: an overview, Acta Geochim., 2016, vol. 35, pp. 215–225.

    Article  Google Scholar 

  43. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  44. Turner, S.P., Foden, J.D., and Morrison, R.S., Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia, Lithos, 1992, vol. 28, pp. 151–179.

    Article  Google Scholar 

  45. Vervoort, J.D., Jonathan Patchett, P., Blichert-Toft, J., Albarede, F., Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system, Earth Planet. Sci. Lett., 1999, vol. 168, pp. 79–99.

    Article  Google Scholar 

  46. Wang, G.C., Liu, Z., Tan, S.C., Wang, Y.K., He, X.H., Li, M.L., and Qi, Q.S., Petrogenesis of biotite granite with transitional I-A-type affinities: Implications for continental crust generation, Lithos, 2021, vol. 396–397, pp. 106199.

    Article  Google Scholar 

  47. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  48. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., and Spiegel, W., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Geoanalyt. Res., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  49. Williams, I.S., Buick, A., and Cartwright, I., An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynold Region, Central Australia, J. Metamorph. Geol., 1996, vol. 14, pp. 29–47.

    Article  Google Scholar 

  50. Wolf, M.B. and Wyllie, P.J., Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time, Contrib. Mineral. Petrol., 1994, vol. 115, pp. 369–383.

    Article  Google Scholar 

  51. Woodhead, J. and Hergt, J.M., A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination, Geostand. Geoanalyt. Res., 2005, vol. 29, no. 2, pp. 183–195.

    Article  Google Scholar 

  52. Wu, F.Y., Li, X.H., Yang, J.H., and Zheng, Y.F., Discussion on the petrogenesis of granites, Acta Petrol. Sinica, 2007, vol. 23, pp. 1217–1238.

    Google Scholar 

  53. Xie, H.J., Zhang, Q., and Zhu, C.H., Petrology and REE-trace element geochemistry of Bozhushan granite pluton in southeastern Yunnan Province, China, Acta Mineral. Sinica, 2009, vol. 29.

    Google Scholar 

  54. Xiong, X.L. and Keppler, H., Audetat, Ni, H.W., Sun, W.D., Li, Y., Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt, Geochim. Cosmochim. Acta, 2011, vol. 75 pp. 1673–1692.

    Article  Google Scholar 

  55. Xu, B., Jiang, S.Y., Wang, R., Ma, L., Zhao, K.D., and Yan, X., Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions, Lithos, 2015, vol. 218–219, pp. 54–72.

    Article  Google Scholar 

  56. Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., and Chu, M.F., A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence, Lithos, 2006, vol. 89, pp. 89–106.

    Article  Google Scholar 

  57. Zhang, L.P., Hu, Y.B., Liang, J.L., Ireland, T., Chen, Y.L., Zhang, R.Q., Sun, S.J., and Sun, W.D., Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications, Acta Geochim., 2017a, vol. 36, pp. 132–150.

    Article  Google Scholar 

  58. Zhang, L.P., Zhang, R.Q., Hu, Y.B., Liang, J.L., Ouyang, Z.X., He, J.J., Chen, Y.X., Guo, J., and Sun, W.D., The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives, Lithos, 2017b, vol. 290–291, pp. 253–268.

    Article  Google Scholar 

  59. Zhao, Z.Y., Hou, L., Ding, J., Zhang, Q.M., and Wu, S.Y., A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: A case study of the Dulong Sn-dominant polymetallic deposit, Ore Geol. Rev., 2018, vol. 93, pp. 268–289.

    Article  Google Scholar 

  60. Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S., and Niu, Y.L., Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution, Episodes, 2006, vol. 29, pp. 26–33.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Vyacheslav Akinin for his thoughtful reviews and constructive comments.

Funding

This study is financially supported by Yunnan Fundamental Research Projects (grants no. 202101AW070012), the National Natural Science Foundation of China (grants no. 41872089), Yunnan Provincial Department of Science and Technology-Yunnan University Joint Fund (KC10117419) and Thousand Young Talents Program of Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Liu, Guo-Chang Wang, Shu-Cheng Tan, Hao Liu or Mei-Li Li.

Ethics declarations

All authors disclosed no relevant relationships.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, GC., Tan, SC. et al. Petrogenesis of the Changlinggang A-type Syenites in the Western South China Block: Implications for Late Cretaceous Tectonic Evolution of the Neo-Tethys. Petrology 31, 440–458 (2023). https://doi.org/10.1134/S0869591123040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123040069

Keywords:

Navigation