Skip to main content
Log in

Charnockitization of feldspar-free orthopyroxene-clinopyroxene-phlogopite metaultramafite in the lapland granulite belt, southern Kola Peninsula: Compositional trends of rocks and minerals, P-T parameters, and fluid regime

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents data on the transformations in the mineralogy and mineral assemblages of quartz- and feldspar-free magnesian orthopyroxene-clinopyroxene-biotite metaultramafic granulites converted into orthopyroxene-clinopyroxene-potassic feldspar-plagioclase-quartz charnockite. Within a 4 to 6-m aureole around the fluid conduit, the granulite has been affected by Na-K-Si-H2O-CO2-Cl-F brine. Thereby the magnesian metaultramafite has undergone progressive debasification and leucocratization: potassic feldspar, oligoclase, and quartz have been metasomatically formed in the interstitial space between the mafic minerals and replaced ortho- and clinopyroxene and biotite. The Fe mole fractions X Fe of all mafic minerals increase toward the fluid conduit as follows: from 0.25 to 0.54 for Opx, from 0.15 to 0.32 for Cpx, and from 0.16 to 0.56 for Bt. The whole-rock compositions suggest that Na, K, and Si have been introduced and Mg, Fe, and Ca removed from the protolith, so that the metaultramafic rock has gradually been transformed first into a mesocratic rock and then, when partial melting started in its most significantly debasified domains, into leucocratic nebulitic migmatite with skialiths of the modified granulite, then into charnockite migma, and eventually into magma. The composition of the charnockite-forming fluid was estimated as \(X_{H_2 O} = 0.6\), X (Na,K)F = 0.3, and \(X_{CO_2 } = 0.1\). The unusual F-rich composition of the fluid is reflected in that both Bt and Hbl are enriched in F and contain almost no Cl. The P-T parameters of the process, which took place at the metamorphic peak, were T ∼ 780°C, P = 8.5 kbar. Material balance plots of the rocks revealed three petrological trends of the charnockite-forming process controlled solely by the composition of the brine: (a) a trend that did not produce either Bt or Hbl during the metasomatic and anatectic stages, (b) that associated with intense amphibolization and biotitization during the metasomatic stage, and (c) a trend associated with the origin of melanocratic metasomatic Opx-Cpx-Bt-Hbl ± Pl selvages around newly formed charnockitoids, with the composition of the selvages close to the melanocratic veins produced in the peripheries of the charnockitization zone by the rapid redeposition of Mg, Fe, and Ca mobilized in the course of debasification. It follows that charnockitization proceeded according to the model of nonisochemical migmatization in an open system, a process driven first of all by the inflow of deep brines. This process differed strongly from simple closed system partial melting induced by an increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcomission on the Systematics of Igneous Rocks, Le Maitre, R. W., Ed., Oxford: Blackwell Scientific Publication, 1989.

    Google Scholar 

  • Aranovich, L.Ya., Mineral’nye ravnovesiya mnogokomponentnykh tverdykh rastvorov (Mineral Equilibria of Multicomponent Solid Solutions), Moscow: Nauka, 1991.

    Google Scholar 

  • Aranovich, L.Y. and Berman, R.G., Optimized standard state and solution properties of minerals. II. Comparison, predictions, and applications, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 25–37.

    Article  Google Scholar 

  • Aranovich, L.Ya., Dubinina, E.O., Avdeenko, A.S., et al., Oxygen isotopic composition of coexisting minerals of sillimanite-hypersthene rocks from the Por’ya Bay area: evidence of fluid involvement in granulite-facies metamorphism, Geochem. Int., 2010, vol. 48, no. 8, pp. 739–751.

    Article  Google Scholar 

  • Aranovich, L.Ya. and Kozlovskii, V.M., The role of silica mobility in the formation of “incipient” eclogites, Geochem. Int., 2009, no. 4, pp. 199–204.

    Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 261–271.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C. Reversed determination of the reaction: phlogopite + quartz = enstatite + potassium feldspar + H2O in the ranges 750–875°C and 2–12 kbar at low H2O activity with concentrated KCl solutions, Am. Mineral., 1998, vol. 83, pp. 193–204.

    Google Scholar 

  • Aranovich, L.Y., Newton, R.C., and Manning, C.E., Brine-assisted anatexis: experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 111–120.

    Article  Google Scholar 

  • Aranovich, L.Y., Makhluf, A.R., Manning, C.E., and Newton, R.C., Dehydration melting and the relationship between granites and granulites, Precambrian Res., 2014, vol. 253, pp. 711–727.

    Article  Google Scholar 

  • Balagansky, V.V., Timmerman, M.Ya., Kislitsyn, R.V., et al., Isotope age of the rocks of the Kolvitsa Belt and Umba Block, southeastern Lapland granulite belt, Kola Peninsula, Vestn. Murmansk. Gos. Tekhn. Univ., 1998, vol. 1, no. 3, pp. 353–356.

    Google Scholar 

  • Belyaev, G.M. and Rudnik, V.A., Types of Fe-Mn calcium metasomatism in relation with granite formation: evidence from the Aldan Shield, in Zhelezo-magnezial’nyi metasomatizm i rudoobrazovanie (Iron-Magnesian Metasomatism and Ore Formation), Moscow: Nauka, 1980, pp. 13–28.

    Google Scholar 

  • Berman, R.G., WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations, Geol. Surv. Canada Open File, 2007, no. 5462, p. 41.

    Google Scholar 

  • Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals: i. model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 1–22.

    Article  Google Scholar 

  • Berman, R.G., Aranovich, L.Y., Rancourt, P., and Mercier, P.H.J., Reversed phase equilibrium constraints on the stability of Mg-Fe-Al biotite, Am. Mineral., 2007, vol. 92, pp. 139–150.

    Article  Google Scholar 

  • Bibikova, E.V., Mel’nikov, V.F., and Avakyan, K.Kh., Lapland granulites: petrology, geochemistry, and isotope age, Petrologiya, 1993, vol. 1, no. 2, pp. 215–234.

    Google Scholar 

  • Blattner, P., Replacement of hornblende by garnet in granulite facies assemblages near Milford Sound, New Zeland, Contrib. Mineral. Petrol., 1976, vol. 55, pp. 181–190.

    Article  Google Scholar 

  • Blattner, P., Transport of low-dehydration products to melt sites via reaction-zone networks, Milford Sound, New Zealand, J. Metamorph. Geol., 2005, vol. 23, pp. 569–578.

    Article  Google Scholar 

  • Bogdanova, M.N., Yefimov, M.M., and Kaulina, T.V., Geochronology of late phases of Early Proterozoic magmatism in the collision suture zone of the White Sea-Laplandian Belt of the Baltic Shield (Kolvitsa Zone), Dokl. Earth Sci., 1996, vol. 351, no. 8, pp. 1256–1259.

    Google Scholar 

  • Brown, G.C. and Fyfe, W.S., The production of granitic melts during ultrametamorphism, Contrib. Mineral. Petrol., 1970, vol. 28, pp. 310–318.

    Article  Google Scholar 

  • Brown, M., The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens, Earth Sci. Rev., 1994, vol. 36, pp. 83–130.

    Article  Google Scholar 

  • Bureau, H. and Keppler, H., Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications, Earth Planet. Sci. Lett., 1999, vol. 165, pp. 187–196.

    Article  Google Scholar 

  • Bushmin, S.A., Savva, E.V., Lokhov, K.I., et al., Isotope age of the sillimanite-hypersthene rocks from the Por’ya Guba nappe of the southeastern fragment of the Lapland granulite belt: U-Pb SHRIMP II zircon dating, in Izotopnye sistemy i vremya geologicheskikh protsessov (Isotope Systems and Timing of Geological Processes), St. Petersburg: IGGD RAN, 2009, vol. 1, pp. 92–96.

    Google Scholar 

  • Cawthorn, R.G. and Collerson, K.D., The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses, Am. Mineral., 1974, vol. 59, pp. 1203–1208.

    Google Scholar 

  • Clemens, J.D., Partial melting and granulite genesis: a Partisan overview, Precambrian Res., 1992, vol. 55, pp. 297–301.

    Article  Google Scholar 

  • Dobmeier, C. and Raith, M.M., On the origin of “arrested” charnockitization in the Chilka Lake area, eastern Ghats Belt, India: a reappraisal, Geol. Mag., 2000, vol. 137, no. 1, pp. 27–37.

    Article  Google Scholar 

  • Engel, A.E.J. and Engel, C.G., Progressive metamorphism and granitization of the Major paragneiss, northwest Adirondack Mountains, New York: Part 1. Total rocks, Bull. Geol. Soc. Am, 1958, vol. 69, no. 11, pp. 1369–1414.

    Article  Google Scholar 

  • Ferry, J.M., A historical review of metamorphic fluid flow, J. Geophys. Res., 1994, no. B8, pp. 15487–15498.

    Google Scholar 

  • Franz, L. and Harlov, D.E., High-grade K-feldspar veining in granulites from the lower crust and implications for granulite facies genesis, J. Geol., 1998, vol. 106, pp. 455–472.

    Article  Google Scholar 

  • Frish, T., Dzhekson, G.D., Glebovitskii, V.A., et al., U-Pb zircon geochronology of the Kolvitsa gabbro-anorthosite complex, southern Kola Peninsula, Russia, Petrologiya, 1995, vol. 3, pp. 248–254.

    Google Scholar 

  • Gavrikova, S.N., Paleoproterozoic granitization in the southern Aldan-Vitim shield, in Ocherki fiz.-khim. petrologii. Vyp. XIV (Essays on Physicochemical Petrology), Moscow: Nauka, 1987, vol. 14, pp. 64–90.

    Google Scholar 

  • Gavrikova, S.N. and Zharikov, V.A., Geochemical features of granitization in Archean rocks in eastern Transbaikalia, Geokhimiya, 1984, no. 1, pp. 26–49.

    Google Scholar 

  • Glebovitsky, V.A., Marker, M., Alexeev, N., et al., Age, evolution and regional setting of the Palaeoproterozoic Umba Zone, Kola peninsula: constraints from new geological, geochemical and U-Pb zircon data, Precambrian Res., 2001, vol. 105, pp. 247–267.

    Article  Google Scholar 

  • Goodspeed, G.E., Xenoliths and skialiths, Am. J. Sci., 1948, vol. 246, pp. 515–525.

    Article  Google Scholar 

  • Guernina, S. and Sawyer, E.W., Large-scale melt depletion in granulite terranes: an example from the Archean Ashuanipi subprovince of Quebec, J. Metamorph. Geol., 2003, vol. 21, no. 2, pp. 181–201.

    Article  Google Scholar 

  • Hansen, E.C. and Harlov, D.E., Orthophosphate and biotite chemistry from orthopyroxene-bearing migmatites from California and South India: the role of a fluid-phase in the evolution of granulite-facies migmatites, Mineral. Petrol., 2009, vol. 95, pp. 201–217.

    Article  Google Scholar 

  • Hansen, E.C., Jarnardhan, A.S., Newton, R.C., et al., Arrested charnockite formation in southern India and Sri Lanka, Contrib. Mineral. Petrol., 1987, vol. 96, pp. 225–244.

    Article  Google Scholar 

  • Hansen, E. and Stük, M., Orthopyroxene-bearing, mafic migmatites at Cone Peak, California: evidence for the formation of migmatitic granulites by anatexis in an open system, J. Metamorph. Geol., 1993, vol. 11, pp. 291–307.

    Article  Google Scholar 

  • Harlov, D.E., Hansen, E.C., and Rigler, C. Petrologic evidence for K-feldspar metasomatism in granulite facies rocks, Chem. Geol., 1998, vol. 151, pp. 373–386.

    Article  Google Scholar 

  • Harlov, D.E. and Wirth, R., K-feldspar-quartz and K-feldspar phase boundary interactions in garnet-orthopyroxene gneisses from the Val Strona di Omegna, Ivrea-Verbano Zone, northern Italy, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 148–162.

    Article  Google Scholar 

  • Hawthorne, F.C., Oberti, R., Harlow, G.E., et al., IMA report. Nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, pp. 2031–2048.

    Article  Google Scholar 

  • Janardhan, A.S., Newton, R.C., and Hansen, E.C., The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India, Contrib. Mineral. Petrol., 1982, vol. 79, pp. 130–149.

    Article  Google Scholar 

  • Khodorevskaya, L.I. and Korikovsky, S.P., Metasomatic garnet-clinopyroxene-orthopyroxene-hornblende veins in metaanorthosites of the Kolvitsa Massif, Kola Peninsula: mineral composition and relation with syngranulite granitization, Dokl. Earth Sci., 2007, vol. 415A, pp. 915–918.

    Article  Google Scholar 

  • Korikovsky, S.P., Metamorfizm, granitizatsiya i postmagmaticheskie protsessy v dokembrii Udokano-Stanovoi zony (Metamorphism, Granitization, and Postmagmatic Processes in the Precambrian of the Udokan-Stanovik Zone), Moscow: Nauka, 1967.

    Google Scholar 

  • Korikovskii, S.P. and Aranovich, L.Ya., Charnockitization and enderbitization of mafic granulites in the Porya Bay Area, Lapland Granulite Belt, southern Kola Peninsula: I. Petrology and geothermobarometry, Petrology, 2010, vol. 18, no. 4, pp. 320–349.

    Article  Google Scholar 

  • Korikovsky, S.P. and Khodorevskaya, L.I., Granitization of Paleoproterozoic high-pressure metagabbro-norites of the Belomorian Group in Gorelyi Island, Kandalaksha Bay area, Baltic Shield, Petrology, 2006, vol. 14, no. 5, pp. 423–452.

    Article  Google Scholar 

  • Korikovsky, S.P., Kotov, A.B., Sal’nikova, E.B., Aranovich, L. Ya., Korpechkov, D. I., Yakovleva, S. Z., Tolmacheva, E. V., and Anisimovaet I. V., The age of the protolith of metamorphic rocks in the southeastern part of the Lapland Granulite Belt, southern Kola Peninsula: correlation with the Belomorian Mobile Belt in the context of the problem of Archean eclogites, Petrology, 2014, vol. 21, no. 2, pp. 91–108.

    Article  Google Scholar 

  • Korzhinskii, D.S., Granitization as magmatic replacement, Izv. Akad. Nauk SSSR, Ser. Geol., 1952, no. 2, pp. 332–452.

    Google Scholar 

  • Korzhinskii, D.S., Essay on metasomatic processes, in Osnovnye problemy v uchenii o magmatogennykh rudnykh mestorozhdeniyakh (Main Problems in the Theory of Magmatogenic Ore Deposits), Moscow: Izd. AN SSSR, 1953, pp. 335–456.

    Google Scholar 

  • Korzhinskii, D.S., Transmagmaticheskie flyuidy i magmaticheskoe zameshchenie. Petrografiya (Transmagmatic Fluids and Magmatic Replacement), Moscow: Mosk. Gos. Univ., 1976, vol. 1.

    Google Scholar 

  • Krylova, M.D., Sedova, I.S., Krylov, I.N., et al., Evolyutsiya veshchestva pri ul’trametamorfizme (na primere dokembriya Vostochnoi Sibiri) (Evolution of Matter during Ultrametamorphism: Evidence from the Precambrian of East Siberia), Leningrad: Nauka, 1972.

    Google Scholar 

  • Letnikov, F.A., Balyshev, S.O., and Lashkevich, V.V., Interrelations among the processes of granitization, metamorphism, and tectonics, Geotectonics, 2000, vol. 34, no. 1, pp. 1–18.

    Google Scholar 

  • Levitskii, V.I., Petrology and Geochemistry of Metasomatism during Formation of Continental Crust, Novosibirsk: GEO, 2005.

    Google Scholar 

  • Lindsley, D.H., Pyroxene thermometry, Am. Mineral., 1983, vol. 68, pp. 477–493.

    Google Scholar 

  • Mehnert, K.R., Migmatites and the Origin of Granitic Rocks, Amsterdam: Elsevier, 1968.

    Google Scholar 

  • Mitrofanov, F.P., Balagansky, V.V., Balashov, V.Yu., et al., U-Pb age of the gabbroanorthosites of the Kola Peninsula, Dokl. Akad. Nauk, 1993, vol. 331, pp. 95–98.

    Google Scholar 

  • Montanini, A. and Harlov, D., Petrology and mienralogy of granulite-facies mafic xenoliths (Sardinia, Italy): evidence for KCl metasomatism in the lower crust, Lithos, 2006, vol. 92, pp. 588–608.

    Article  Google Scholar 

  • Morfin, S., Sawyer, E.W., and Bandyayera, D., Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec, Lithos, 2013, vol. 168–169, pp. 200–218.

    Article  Google Scholar 

  • Morimoto, N., Fabries, J., Ferguson, A.K., et al., Nomenclature of pyroxenes, Am. Mineral., 1988, vol. 62, pp. 53–62.

    Google Scholar 

  • Newton R.C., Aranovich L.Y., Hansen E.S, and Vandenheuvel B.A., Hypersaline fluids in Precambrian deepcrustal metamorphism, Precambrian Res., 1998, vol. 91, pp. 41–63.

    Article  Google Scholar 

  • Newton, R.C. and Manning, C.F., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72.

    Google Scholar 

  • Newton, R.C., Smith, J.V., and Windley, B.F., Carbonic metamorphism, granulites and crustal growth, Nature, 1980, vol. 288, pp. 45–50.

    Article  Google Scholar 

  • Olsen, S.N., Open- and closed-system migmatites in the Front Range, Colorado, Am. J. Sci., 1982, vol. 282, pp. 1596–1622.

    Article  Google Scholar 

  • Olsen, S.N., Mass-balance and mass-transfer in migmatites from the Colorado Front Range, Contrib. Mineral. Petrol., 1984, vol. 84, pp. 30–44.

    Article  Google Scholar 

  • Olsen, S.N., Mass Balance in Migmatites, J.R. Ashworth, Ed., Glasgow: Blackie and Son, 1985.

  • Orville, P.M., Alkali ion exchange between vapor and feldspar phases, Am. J. Sci., 1963, vol. 261, pp. 201–237.

    Article  Google Scholar 

  • Pattison, D.R.M., Infiltration-driven anatexis in granulite facies metagabbro, Grenville Province, Ontario, Canada, J. Metamorph. Geol., 1991, vol. 9, no. 3, pp. 315–332.

    Article  Google Scholar 

  • Perchuk, L.L., Thermodynamic conditions of granitization of metapelitic sequences, in Ocherki fiz.-khim. petrologii (Essay on Physicochemical Petrology), Moscow: Nauka, 1987, vol. II, pp. 188–213.

    Google Scholar 

  • Perchuk, L.L., Gerya, T.V., and Korsman, K., Model of charnockitization of gneissic complexes, Petrologiya, 1994, vol. 2, pp. 451–479.

    Google Scholar 

  • Perchuk, L.L., Safonov, O.G., Gerya, T.V. et al., Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri Lanka, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 212–232.

    Article  Google Scholar 

  • Petrova, Z.I. and Levitskii, V.I., Petrologiya i geokhimiya granulitovykh kompleksov Pribaikal’ya (Petrology and Geochemistry of the Granulite Complexes of Pribaikalia), Novosibirsk: Nauka, 1984.

    Google Scholar 

  • Raith, M. and Srikantappa, C., Arrested charnockite formation at Kottavattam, southern India, J. Metamorph. Geol., 1993, vol. 11, no. 6, pp. 815–832.

    Article  Google Scholar 

  • Rajesh H.M., Belyanin G.A., Safonov O.G. et al. Fluid-induced dehydration of the Paleoarchean Sand River biotitehornblende gneiss, Central Zone, Limpopo Complex, South Africa, J. Petrol., 2013, vol. 54, no. 1, pp. 41–74.

    Article  Google Scholar 

  • Ravindra Kumar, G.R., Mechanism of arrested charnockite formation at Nemmara, Palghat region, southern India, Lithos, 2004, vol. 75, pp. 331–358.

    Article  Google Scholar 

  • Reynolds, D.L., The sequence of geochemical changes leading to granitization, Quart. J. Geol. Soc. London, 1946, vol. 102, pp. 389–446.

    Article  Google Scholar 

  • Reynolds, D.L., On the relation between “fronts” of regional metamorphism and “fronts” of granitization, Geol. Mag., 1947, vol. 84, pp. 106–109.

    Article  Google Scholar 

  • Ronenson, B.M., Problems of basification and basic front in the metamorphic complexes, in Geologiya metamorficheskikh kompleksov. Mezhvuzovskii nauchnyi tematicheskii (Geology of Metamorphic Complexes. Interuniversity Conference), Keil’man, G.A., Ed., Sverdlovsk: 1989, pp. 72–85.

    Google Scholar 

  • Safonov, O.G. and Aranovich, L.Y., Alkali control of highgrade metamorphism and granitization, Geosci. Frontiers, 2014, vol. 5, pp. 711–727.

    Article  Google Scholar 

  • Safonov, O.G., Kovaleva, E.I., Kosova, S.A., Rajesh, H.V. et al., Experimental and petrological constraints on localscale interaction of biotite-amphibole gneiss with H2O-CO2-(K, Na)Cl fluids at middle-crustal conditions: example from the Limpopo Complex, South Africa, Geosci. Frontiers, 2012, vol. 3, no. 6, pp. 829–841.

    Article  Google Scholar 

  • Sharkov, E.V., Krassivskaya, I.S., and Chistyakov, A.V., Dispersed mafic-ultramafic intrusive magmatism in Early Paleoproterozoic mobile zones of the Baltic Shield: an example of the Belomorian drusite (coronite) complex, Petrology, 2004, vol. 12, pp. 561–582.

    Google Scholar 

  • Shcherbakova, T.F., Amfibolity Belomorskogo kompleksa i ikh granitizatsiya (Amphibolites of the Belomorian Compelx and their Granitization), Moscow: Nauka, 1988

    Google Scholar 

  • Stevens, G. and Clemens, J.D., Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem. Geol., 1993, vol. 108, pp. 1–17.

    Article  Google Scholar 

  • Stevens, G., Clemens, J. D., and Droop, G.T.R., Melt production during granulite-facies anatexis: experimental data from primitive metasedimentary protoliths, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 352–370.

    Article  Google Scholar 

  • Stähle, H.J., Raith, V., Hoernes, S., and Delfs, A., Element mobility during incipient granulite formation at Kabbaldurga, southern India, J. Petrol., 1987, vol. 28, no. 5, pp. 803–834.

    Article  Google Scholar 

  • Streckeisen, A., To each plutonic rock its proper name, Earth Sci. Rev., 1976, vol. 12, pp. 1–33.

    Article  Google Scholar 

  • Sudovikov, N.G., Iron-magnesian-calcium metasomatism in the Archean of the Aldan Shield and some problems of “main front”, Izv. Akad. Nauk SSSR, Ser. Geol., 1956, no. 1, pp. 29–49.

    Google Scholar 

  • Thompson, A.B., Heat, fluids and melting in the granulite facies, in Granulites and Crustal Evolution, Vielzeuf, D. and Vidal, Ph., Eds, NATO ASI. Series, 1990, pp. 37–58.

    Chapter  Google Scholar 

  • Touret, J.L.R. and Huizenga, J.-M., Fluids in granulites, in Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo Complex of Southern Africa, Van Reenen, D.D., Kramers, J.D., Mccourt, S., and Perchuk, L.L. Eds., Geol. Soc. Am. Mem., 2011, vol. 207, pp. 1–14.

    Article  Google Scholar 

  • Utenkov, V.A., High-pressure basificates in the Sysertsko-Il’meny Gory gneiss-migmatite complex, in Geologiya metamorficheskikh kompleksov. Mezhvuzovskii nauchnyi tematicheskii sbornik (Geology of Metamorphic Complexes. Inter-Institute Special Issue of Collected Papers), Keil’man, G.A., Ed., Sverdlovsk: 1989, pp. 62–72.

    Google Scholar 

  • Waters, D. J., Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa, J. Metamorph. Geol., 1998, vol. 6, no. 4, pp. 387–404.

    Article  Google Scholar 

  • Waters, D.J. and Whales, C.J., Dehydration melting and the granulite transition in metapelites from southern Namaqualand, S. Africa, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 269–275.

    Article  Google Scholar 

  • Whitney, D.L. and Evans, B., Abbreviations for names of rock-forming minerals Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

    Article  Google Scholar 

  • Zhu, C. and Sverjensky, A.D., Partitioning of F-Cl-OH between minerals and hydrothermal fluids, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1837–1858.

    Article  Google Scholar 

  • Zhu, C. and Sverjensky, A.D., F-Cl-OH partitioning between biotite and apatite, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 3435–3467.

    Article  Google Scholar 

  • Zharikov, V.A., Problems of granite formation, Vestn. Mosk. Univ., Ser. Geol., 1987, no. 6, pp. 3–14.

    Google Scholar 

  • Zharikov, V.A. and Gavrikova, S.N., Granite formation in active margin of the Aldan-Stanovik shield, Zap. Vseross. Mineral. O-va, 1987, vol. 116, no. 4, pp. 377–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Korikovsky.

Additional information

Original Russian Text © S.P. Korikovsky, L.Ya. Aranovich, 2015, published in Petrologiya, 2015, Vol. 23, No. 3, pp. 211–250.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korikovsky, S.P., Aranovich, L.Y. Charnockitization of feldspar-free orthopyroxene-clinopyroxene-phlogopite metaultramafite in the lapland granulite belt, southern Kola Peninsula: Compositional trends of rocks and minerals, P-T parameters, and fluid regime. Petrology 23, 189–226 (2015). https://doi.org/10.1134/S0869591115030030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591115030030

Keywords

Navigation