Skip to main content
Log in

Mesoproterozoic orangeites (Kimberlites II) of West Karelia: Mineralogy, geochemistry, and Sr-Nd isotope composition

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Mineralogical and petrological-geochemical features of the Mesoproterozoic (1.23–1.20 Ga) alkaline ultrabasic rocks from the Kostomuksha-Taloveis (Russia) and Lentiira-Kuhmo (Finland) areas, West Karelia, have been studied. In terms of mineralogy and geochemistry, these rocks more resemble group II kimberlites of South Africa (orangeites) than olivine lamproites or ultramafic lamprophyres. On the basis of phenocryst composition, the studied orangeites are divided into three types: Cpx-Phl-Ol, Phl-Ol, and Phl-Carb orangeites. The Cpx-Phl-Ol orangeites from the Kostomuksha cluster clearly differ from analogous rocks from the Lentiira cluster. The composition of Phl-Ol orangeites is indicative of derivation by intense fractional crystallization; Cpx-Phl-Ol orangeites from the Kostomuksha area display evidence of intense lithosphere assimilation. The Phl-Carb orangeites from the Taloveis cluster and Cpx-Ol orangeites from the Lentiira cluster most closely approximate primary melts. The Kostomuksha orangeites are characterized by lowto moderate-radiogenic (87Sr/86Sr)1220 ratio varying from 0.7038 to 0.7067. The Phl-Carb orangeites of Taloveis have less radiogenic Nd isotope composition (ɛNd from −11 to −12) as compared to the Cpx-Phl-Ol and Phl-Ol orangeites of Kostomuksha (ɛNd from −6.9 to −9.4). The Cpx-Phl-Ol orangeites from Lentiira contain fresh olivine. By morphology and composition, there are three olivine generations: (1) large rounded, usually zoned crystals with Fo 92 core, 0.33–0.37 wt % NiO, and 0.03–0.04 wt% CaO, which are interpreted as xenocrysts from depleted peridotites; (2) anhedral rounded zoned olivines of intermediate size with Fo 82–83 cores, 0.03–0.05 wt % CaO, 0.12–0.17 wt % NiO, and up to 0.40 wt % MnO. These olivines were entrapped by orangeite melt and presumably represent a cumulate of basaltic melts or were derived from metasomatized peridotites; (3) fine euhedral olivines and xenocryst rims corresponding to Fo 88–89 with 0.10–0.42 wt % CaO, 0.14–0.35 wt % NiO, and up to 0.07–0.21 wt % MnO; their origin was presumably related to the crystallization from kimberlite melt. The calculation of \(f_{O_2 }\) of kimberlite melt during crystallization of perovskites using Nb-Fe perovskite oxyba-rometer showed that Cpx-Phl-Ol orangeites of Kostomuksha and orangeites of Lentiira crystallized at similar oxygen fugacities corresponding to ΔNNO from −3.3 to −1.1 and from −3.3 to −0.9, respectively. The Sm-Nd and Rb-Sr isotope study provided evidence for the contribution from ancient enriched source in the genesis of the orangeites. It was proposed that their mantle source was formed in two stages: (1) metasomatic reworking of previously depleted lithospheric source at the Karelian Craton base during Paleoproterozoic orogenic events 2.1–2.0 Ga ago; (2) extension-related generation of orangeite melts 1.27–1.20 Ga ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, U.B., Eklund, O., Frojdo, S., et al., 1.8 Ga magmatism in the Fennoscandian Shield: lateral variations in subcontinental mantle enrichment, Lithos, 2006, vol. 86, pp. 110–136.

    Article  Google Scholar 

  • Antonov, A.V., Lokhov, K.I., Luk’yanova, L.I., et al., Geochemical characteristics of the dike rocks of the Kostomuksha iron ore deposit: stable and radiogenic isotope systematics, Otechestvennaya Geol., 2009, no. 7, pp. 1–9.

    Google Scholar 

  • Arndt, N.T., Guitreau, M., Boullier, A.-M., et al., Olivine and the origin of kimberlite, J. Petrol., 2010, vol. 51, pp. 573–602.

    Article  Google Scholar 

  • Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, no. 1, pp. 27–40.

    Article  Google Scholar 

  • Becker, H., Wenzel, T., and Volker, F., Geochemistry of glimmerite veins in peridotites from Lower Austria-implications for the origin of K-rich magmas in collision zones, J. Petrol., 1999, vol. 40, no. 2, pp. 315–338.

    Article  Google Scholar 

  • Becker, M. and Le Roex, A., Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution, J. Petrol., 2006, vol. 47, no. 4, pp. 673–703.

    Article  Google Scholar 

  • Bell K. and Rukhlov, A.S., Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics, in Phoscorites and Carbonatites from Mantle to Mine, Wall F. and Zaitsev, A.N., Eds., Mineral. Soc. Great Britain, Ireland. Mineral. Soc. Ser., 2004, vol. 10, pp. 433–462.

    Google Scholar 

  • Bell, K. and Simonetti, A., Source of parental melts to carbonatites-critical isotopic constraints, Mineral. Petrol, 2009, vol. 98, nos. 1–4, pp. 77–89.

    Google Scholar 

  • Bellis, A. and Canil, D., Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlitic magmas I: experimental calibration, J. Petrol., 2007, vol. 48, no. 2, pp. 219–230.

    Article  Google Scholar 

  • Belyatskii, B.V., Nikitina, L.P., Savva, E.V., et al., Isotopic signatures of lamproite dikes on the Eastern Baltic Shield, Geochem. Int., 1997, no. 6, pp. 575–579.

    Google Scholar 

  • Bibikova, E.V., Bogdanova, S.V., Glebovitskii, V.A., et al., Evolution of the Belomorian Belt: NORDSIM U-Pb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages, Petrology, 2004, no. 3, pp. 195–210.

    Google Scholar 

  • Bingen, B. and Nordgulen, Ø., A four-phase model for the Sveconorwegian orogeny, SW Scandinavia, Norw. J. Geol., 2008, vol. 88, pp. 43–72.

    Google Scholar 

  • Bogdanova, S.V., Bingen, B., Gorbatschev, R., et al., The East European Craton (Baltica) before and during the assembly of Rodinia, Precambrian Res., 2008, vol. 160, pp. 23–45.

    Article  Google Scholar 

  • Brabder, L., Söberlund, U., and Bingen, B., Tracing the 1271-1246 Ma central Scandinavian dolerite group mafic magmatism in Fennoscandia: U-Pb baddeleyite and Hf isotope data on the Moslätt and Børgefjell dolerites, Geol. Mag., 2011, vol. 148, no. 4, pp. 632–643.

    Article  Google Scholar 

  • Brett, R.C., Russell, J.K., and Moss, S., Origin of olivine in kimberlite: phenocryst or impostor?, Lithos, 2009, vol. 112, pp. 201–212.

    Article  Google Scholar 

  • Carter Hearn, Jr., B., The Homestead kimberlite, Central Montana, USA: mineralogy, xenocrysts, and upper-mantle xenoliths, Lithos, 2004, vol. 77, nos. 1–4, pp. 473–491.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Lehmann, B., Mainkar, D., et al., Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume-lithosphere interaction in the Bastar craton, Central India, Contrib. Mineral. Petrol., 2010, vol. 161, no. 5, pp. 721–742.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Lehmann, B., Mainkar, D., et al., Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plumelithosphere interaction in the Bastar craton, Central India, Contrib. Mineral. Petrol., 2011, vol. 161, pp. 721–742.

    Article  Google Scholar 

  • Çoban, H. and Flower, M.F.J., Mineral phase compositions in silica-undersaturated “leucite” lamproites from the Bucak area, Isparta, SW Turkey, Lithos, 2006, no. 89, pp. 275–299.

    Google Scholar 

  • Coe, N., Le Roex, A.P., Gurney, J., et al. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry, Contrib. Mineral. Petrol., 2008, vol. 156, no. 5, pp. 627–652.

    Article  Google Scholar 

  • Dalton, J.A. and Wood, B.J., The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions, Contrib. Mineral. Petrol., 1993, vol. 114, no. 4, pp. 501–509.

    Article  Google Scholar 

  • Daly, J.S., Balagansky, V.V., Timmerman, M.J., et al., Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola orogen, northern Fennoscandian Shield, Precambrian Res, 2001, vol. 105, pp. 289–314.

    Article  Google Scholar 

  • Dawson, J.B., Metasomatism and partial melting in uppermantle peridotite xenoliths from the Lashaine Volcano, Northern Tanzania, J. Petrol., 2002, vol. 43, no. 9, pp. 1749–1777.

    Article  Google Scholar 

  • Donnelly, C.L., Griffin, W.L., O’Reilly, S.Y., et al., The kimberlites and related rocks of the Kuruman kimberlite province, Kaapvaal craton, South Africa, Contrib. Mineral. Petrol., 2010, vol. 161, no. 3, pp. 351–371.

    Article  Google Scholar 

  • Enggist, A., Chu, L., and Luth, R.W., Phase relations of phlogopite with magnesite from 4 to 8 GPa, Contrib. Mineral. Petrol., 2011, vol. 163, no. 3, pp. 467–481.

    Article  Google Scholar 

  • Fedortchouk, Y. and Canil, D., Intensive variables in kimberlite magmas, Lac de Gras, Canada, and implications for diamond survival, J. Petrol., 2004, vol. 45, no. 9, pp. 1725–1745.

    Article  Google Scholar 

  • Foley, S.F., Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas, Lithos, 1992, no. 28, pp. 435–453.

    Google Scholar 

  • Frezzotti, M.L., Andersen, T., Neumann, E.-R., et al., Carbonatite melt-CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid-rock interaction in the upper mantle, Lithos, 2002, vol. 64, nos. 3–4, pp. 77–96.

    Article  Google Scholar 

  • Gibson, S.A., McMahon, S.C., Day, J.A. et al., Highly refractory lithospheric mantle beneath the Tanzanian craton: evidence from Lashaine pre-metasomatic garnet-bearing peridotites, J. Petrol., First published online: May, pp. 15, 2013.

    Google Scholar 

  • Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material-implications for crustal evolution, Earth Planet. Sci. Lett., 1998, vol. 87, no. 3, pp. 249–65.

    Article  Google Scholar 

  • Grassi, D. and Schmidt, M.W., Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 169–191.

    Article  Google Scholar 

  • Herzberg, C., Asimow, P.D., Ionov, D.A., et al., Nickel and helium evidence for melt above the core-mantle boundary, Nature, 2013, vol. 493, no. 7432, pp. 393–398.

    Article  Google Scholar 

  • Hoal, K.E.O., Hoal, B.G., Erlank, A.J., et al., Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets, Earth Planet. Sci. Lett., 1994, vol. 126, pp. 303–313.

    Article  Google Scholar 

  • De Hoog, J.C.M., Gall, L., and Cornell, D.H., Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 2010, vol. 270, nos 1–4, pp. 196–215.

    Article  Google Scholar 

  • Jacobs, D.A.B., Orthopyroxene stability within kimberlite magma: an experimental investigation, Thesis (MSc) Stellenbosch University, 2012.

    Google Scholar 

  • Kamenetsky, V., Kamenetskaya, M., Sobolev, A., et al., Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins, J. Petrol., 2008, vol. 49, pp. 823–839.

    Article  Google Scholar 

  • Kononova, V.A., Pervov, V.A., Bogatikov, O.A., et al., Potassic mafic rocks with megacrysts from the Northwestern Ladoga Lake area (Karelia, Russia): a diversity of mantle sources of potassic rocks in the east of the Fennoscandian Shield, Geochem. Int, 2000, vol. 38, pp. 539–558.

    Google Scholar 

  • Kononova, V.A., Levskii, L.K., Pervov, V.A., et al., Pb-Sr-Nd isotopic systematics of mantle sources of potassic ultramafic and mafic rocks in the North of the East European Platform, Petrology, 2002, vol. 10, no. 5, pp. 493–509.

    Google Scholar 

  • Korja, A., Lantinen, N.R., and Nironen, M., The Svecofennian orogen: a collage of microcontinents and island arcs, European Lithosphere Dynamics, Geol. Soc. London Mem., 2006, vol. 32, pp. 561–578.

    Article  Google Scholar 

  • Krmíêk, L., Cempirek, J., Havlin, A., et al., Mineralogy and petrogenesis of a Ba-Ti-Zr-rich peralkaline dyke from Šebkovice (Czech Republic): recognition of the most lamproitic Variscan intrusion, Lithos, 2011, vol. 121, nos. 1–4, pp. 74–86.

    Article  Google Scholar 

  • Lamproity (Lamproites), Bogatikov, O.A., Ryabchikov, I.D., and Kononova, V.A., Eds., Moscow: Nauka, 1991.

    Google Scholar 

  • Lehtonen, M. and O’Brien, H., Mantle transect of the Karelian Craton from margin to core based on P-T data from garnet and clinopyroxene xenocrysts in kimberlites, Bull. Geol. Soc. Finl., 2009, vol. 81, pp. 79–102.

    Google Scholar 

  • Lehtonen, M., O’Brien, H., Johanson, B., and Pakkanen, L., Electron microprobe and LA-ICP-MS analyses of mantle xenocrysts from Lentiira-Kuhmo and Kuusamo area kimberlites, Geol. Surv. Finland, 2009, vol. 81, pp. 79–102.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Chekulaev, V.P., Arestova, N.A., et al., Archean terranes in Karelia: geological and isotopic-geochemical evidence, Geotectonics, 2000, no. 6, pp. 452–467.

    Google Scholar 

  • Mahotkin, I.L., Petrology of group 2 kimberlite-olivine lamproite (K2L) series from Kostomuksha area, Karelia, N.W. Russia, in Extended Abstracts of 7th International Kimberlite Conference, Cape Town, South Africa, 1998, Cape Town, 1998, pp. 529–531.

    Google Scholar 

  • McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • McNulty, W.K. and O’Brien, H.E., Seitaper-Group II kimberlite/olivine lamproite: large 1200 Ma diamondiferous pipe in Kuhmo, eastern Finland, in Abstract of 10th International Conference, Bangalore, India, 2012, N:101KC-300, pp. 1–4.

    Google Scholar 

  • Mirnejad, H. and Bell, K., Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-Pb-O isotopic compositions, J. Petrol., 2006, vol. 47, no. 12, pp. 2463–2489.

    Article  Google Scholar 

  • Mitchell, R.H., Kimberlites. Mineralogy, Geochemistry and Petrology, New York, London: Plenum Press, 1986.

    Google Scholar 

  • Mitchell, R.H., Kimberlites, Orangeites and Related Rocks, New York: Plenium Press, 1995.

    Book  Google Scholar 

  • Moore, A.E., Olivine: a monitor of magma evolutionary paths in kimberlite and olivine melilitites, Contrib. Mineral. Petrol, 1988, vol. 99, pp. 238–248.

    Article  Google Scholar 

  • Moore, A.E., The case for a cognate, polybaric origin for kimberlitic olivines, Lithos, 2012, vol. 128–131, pp. 1–10.

    Article  Google Scholar 

  • Nelson, D.R., Isotopic characteristics and petrogenesis of the lamproites and kimberlites of Central West Greenland, Lithos, 1989, vol. 22, no. 4, pp. 265–274.

    Article  Google Scholar 

  • Nikitina, L.P., Levskii, L.K., Lokhov, K.I., et al., Proterozoic alkaline-ultramafic magmatism in the eastern part of the Baltic Shield, Petrology, 1999, vol. 7, no. 3, pp. 246–266.

    Google Scholar 

  • O’Brien, H.E. and Tyni, M., Mineralogy and geochemistry of kimberlites and related rocks from Finland, in Extended Abstracts of 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Cape Town: Red Roof Design, vol. 2, pp. 625–636.

  • O’Brien, H., Phillips, D., and Spencer, R., Isotopic ages of Lentiira-Kuhmo-Kostomuksha olivine lamproite-group II kimberlites, Bull. Geol. Soc. Finl., 2007, vol. 79, pp. 203–215.

    Google Scholar 

  • O’Neill, H.C. and Wall, V.J., The olivine-spinel oxygen geobarometer, the nickel precipitation curve and oxygen fugacity of the upper mantle, J. Petrol., 1987, vol. 28, pp. 1169–1192.

    Article  Google Scholar 

  • O’Reilly, S.Y., Griffin, W.L., and Ryan, C.G., Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry, Mineral. Mag., 1997, vol. 61, pp. 257–269.

    Article  Google Scholar 

  • Parsadanyan, K.S., Kononova, V.A., and Bogatikov, O.A., Sources of heterogeneous magmatism of the Arkhangelsk diamondiferous province, Petrology, 1996, vol. 4, no. 5, pp. 460–479.

    Google Scholar 

  • Peltonen, P. and Brügmann, G., Origin of layered continental mantle (Karelian Craton, Finland): geochemical and Re-Os isotope constraints, Lithos, 2006, vol. 89, nos. 3–4, pp. 405–423.

    Article  Google Scholar 

  • Popov, M.G., Raevskaya, M.B., and Gor’kovets, V.Ya., Petrochemical series of the Kostomuksha lamproite rocks, in Materialy Vserossiiskoi konferentsii “Geodinamika, magmatizm, sedimentogenez i minerageniya severo-zapada Rossii” (Proceedings of All-Russian Conference on “Geodynamics, Magmatism, Sedimentogenesis, and Metallogeny of Northwestern Russia), Petrozavodsk, 2007, pp. 310–314.

    Google Scholar 

  • Prelevic, D., Foley, S.F., Romer, R., et al., Tertiary ultrapotassic volcanism in Serbia: constraints on petrogenesis and mantle source characteristics, J. Petrol., 2005, vol. 46, no. 7, pp. 1443–1487.

    Article  Google Scholar 

  • Prelevic, D., Foley, S.F., Romer, R., et al., Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics, Geochim. Cosmoch. Acta, 2008, vol. 72, no. 8, pp. 2125–2156.

    Article  Google Scholar 

  • Prelevic, D., Akal, C., Foley, S.F., et al., Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey, J. Petrol., 2012, vol. 53, pp. 1019–1055.

    Article  Google Scholar 

  • Proskuryakov, V.V., Uvad’ev, L.I., Zhuravlev, V.A., et al., Alkaline picrites of the Karelian-Kola region, Dokl. Akad. Nauk SSSR, 1989, vol. 307, no. 6, pp. 1457–1460.

    Google Scholar 

  • Puchtel, I.S., Arndt, N.T., Hofmann, A.W., et al., Petrology of mafic lavas within the Onega plateau, Central Karelia: evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 134–153.

    Article  Google Scholar 

  • Raevskaya, M.B. and Gor’kovets, V.Ya., Ultrabasic-alkaline complexes of the Fenno-Karelian craton as reflection of the Paleoproterozoic tectonomagmatic activation, in Materialy XI Vserossiiskogo petrograficheskogo soveshchaniya “Magmatizm i metamorfizm v istorii Zemli” (Proceedings of 11th All-Russian Petrographic Conference “Magmatism and Metamorphism in the Earth’s Evolution”), Yekaterinburg, 2010, vol. 1, p. 165.

    Google Scholar 

  • Rehfeldt, T., Jacob, D.E., Carlson, R.W., et al., Fe-rich dunite xenoliths from South African kimberlites: cumulates from Karoo flood basalts, J. Petrol., 2007, vol. 48, no. 7, pp. 1387–1409.

    Article  Google Scholar 

  • Roeder, P.L. and Schulze, D.J., Crystallization of groundmass spinel in kimberlite, J. Petrol., 2008, vol. 49, pp. 1473–1595.

    Article  Google Scholar 

  • Romu, I., Luttinen, A.V., and O’Brien, H.E., Lamproiteorangeite transition in 159 Ma dykes of Dronning Maud Land, Antarctica?, Abstracts of 10th International Kimberlite Coference, 2012, 10IKC35.

    Google Scholar 

  • Rudashevskii, N.S., Gor’kovets, V.Ya., Rudashevskii, V.N., et al., Lamproites of the Kostomuksha Ore district (Western Karelia): 3-D mineralogical characteristics, Reg. Geol. Metallog., 2012, vol. 49, pp. 34–46.

    Google Scholar 

  • Samsonov, A.V., Tretyachenko, V.V., Nosova, A.A., et al., Sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform, in Abstracts of 10th International Kimberlite Conference, 1989, pp. 189–205.

    Google Scholar 

  • Samsonov, A.V., Bibikova, E.V., Larionova, Yu.O., et al., Magnesian granitoids (sanukitoids) of the Kostomuksha Area, Western Karelia: petrology, geochronology, and tectonic environment of formation, Petrology, 2004, vol. 12, no. 5, pp. 437–468.

    Google Scholar 

  • Samsonov, A.V., Larionova, Yu.O., Sal’nikova, E.B., et al., Isotope geochemistry and geochronology of the Paleoproterozoic metakimberlites of the Kimozero Occurrence, Central Karelia, in Materialy IV Rossiiskoi konferentsii po izotopnoi geokhronologii “Izotopnye sistemy i vremya geologicheskikh protsessov” (Proceedings of 4th Russian Conference “Isotope Systems and Timin of Geological Processes”), St. Petersburg, 2009, vol. 2, pp. 158–161.

    Google Scholar 

  • Scott-Smith, B.H., Skinner, E.M.W., and Loney, P.E., The Kapamba lamproites of the Luangwa Valley, eastern Zambia, in Abstract of 4th International Kimberlite Conference, Geol. Soc. Austral. Spec. Publ., 1989, vol. 14, pp. 189–205.

    Google Scholar 

  • Sheppard, S. and Taylor, W.R., Barium- and LREE-rich olivine-mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia, Lithos, 1992, vol. 28, pp. 303–325.

    Article  Google Scholar 

  • Söberlund, U., Isachsen, C., Bylund, G., et al., U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian shield from 1.6 to 0.9 Ga, Contrib. Mineral. Petrol, 2005, vol. 150, pp. 174–194.

    Article  Google Scholar 

  • Söberlund, U., Elming, S., Ernst, R.E., et al., The central Scandinavian dolerite group-protracted hotspot activity or back-arc magmatism? Constraints from U-Pb baddeleyite geochronology and Hf isotopic data, Precambrian Res., 2006, vol. 150, pp. 136–152.

    Article  Google Scholar 

  • Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., et al., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia, Lithos, 2009, vol. 112, pp. 701–713.

    Article  Google Scholar 

  • Solov’eva, L.V., Lavrent’ev, Yu.G., Egorov, K.N., et al., The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts, Russ. Geol. Geophys., 2008, vol. 49, no. 4, pp. 207–224.

    Article  Google Scholar 

  • Tainton, K.M. and McKenzie, D., The generation of kimberlites, lamproites and their source rocks, J. Petrol., 1994, vol. 35, pp. 787–817.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Jenner, G.A., et al., Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications, J. Petrol., 2005, vol. 46, no. 9, pp. 1893–1900.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Jenner, G.A., et al., Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton, J. Petrol., 2006, vol. 47, no. 7, pp. 1261–1315.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Stracke, A., et al., Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives, Earth Planet. Sci. Lett., 2007, vol. 256, nos. 3–4, pp. 433–454.

    Article  Google Scholar 

  • Tappe, S., Steenfelt, A., and Nielsen, T., Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic Craton, West Greenland: new high-precision U-Pb and Sr-Nd isotope data on perovskite, Chem. Geol., 2012, vol. 320–321, pp. 113–127.

    Article  Google Scholar 

  • Taylor, W.R., Tompkins, L.A., and Haggerty, S.E., Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite end member of sublithospheric origin, Geochim. Cosmoch. Acta, 1994, vol. 58, no. 19, pp. 4017–4037.

    Article  Google Scholar 

  • Thomsen, T.B. and Schmidt, M.W., Melting of carbonaceous pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle, Earth Plan. Scien. Lett, 2008, vol. 267, pp. 17–31.

    Article  Google Scholar 

  • Tichomirowa, M., Grosche, G., Gotze, J., et al., The mineral isotope composition of two Precambrian carbonatite complexes from the Kola alkaline province-alteration versus primary magmatic signatures, Lithos, 2006, vol. 91, nos. 1–4, pp. 229–249.

    Article  Google Scholar 

  • Tursack, E. and Liang, Y., A comparative study of melt-rock reactions in the mantle: laboratory dissolution experiments and geological field observations, Contrib. Mineral. Petrol., 2012, vol. 163, no. 5, pp. 861–876.

    Article  Google Scholar 

  • Ulmer, P. and Sweeney, R.J., Generation and differentiation of group ii kimberlites: constraints from a high-pressure experimental study to 10 GPa, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 12, pp. 2139–2153.

    Article  Google Scholar 

  • Woodard, J., Genesis and Emplacement of Carbonatites and Lamprophyres in the Svecofennian Domain, University of Turku, 2010.

    Google Scholar 

  • Woodhead, J. Hergt, J., et al., African kimberlites revisited: in situ Sr-isotope analysis of groundmass perovskite, Lithos, 2009, vol. 112, pp. 311–317.

    Article  Google Scholar 

  • Workman, R.K. and Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 2005, vol. 231, nos. 1–2, pp. 53–72.

    Article  Google Scholar 

  • Yamashita, H., Arima, M., and Ohtani, E., High pressure melting experiments on group II kimberlite up to 8 GPa: implications form mantle metasomatism, Abstract of 6th International Kimberlite Conference, Novosibirsk, Russia, 1995, Novosibirsk, 1995, pp. 669–671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kargin.

Additional information

Original Russian Text © A.V. Kargin, A.A. Nosova, Yu.O. Larionova, V.A. Kononova, S.E. Borisovsky, E.V. Koval’chuk, I.G. Griboedova, 2014, published in Petrologiya, 2014, Vol. 22, No. 2, pp. 171–207.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargin, A.V., Nosova, A.A., Larionova, Y.O. et al. Mesoproterozoic orangeites (Kimberlites II) of West Karelia: Mineralogy, geochemistry, and Sr-Nd isotope composition. Petrology 22, 151–183 (2014). https://doi.org/10.1134/S0869591114020039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591114020039

Keywords

Navigation