Skip to main content
Log in

Interaction of model peridotite with H2O-KCl fluid: Experiment at 1.9 GPa and its implications for upper mantle metasomatism

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Mineralogical and geochemical data suggest that chloride components play an important role in the transformation and partial melting of upper mantle peridotites. The effect of KCl on the transformation of hydrous peridotite rich in Al2O3, CaO, and Na2O was examined in experiments aimed at studying interaction between model NCMAS peridotite with H2O-KCl fluid under a pressure of 1.9 GPa, temperatures of 900–1200°C, and various initial H2O/KCl ratios. The experimental results indicate that KCl depresses the solidus temperature of the hydrous peridotite: this temperature is <900°C at 1.9 GPa, which is more than 100°C lower than the solidus temperature (1000–1025°C) of hydrous peridotite in equilibrium with KCl-free fluid. The reason for the decrease in the melting temperature is that the interaction of KCl with silicates prevails over the effect of chloride on the water activity in the fluid. Experimental data highlight the key role of Al2O3 as a component controlling the whole interaction process between peridotite and H2O-KCl fluid. Garnet, spinel, and pargasite-edenite amphibole in association with aluminous orthopyroxene are unstable in the presence of H2O-KCl fluid at a chloride concentration in the fluid as low as approximately 2 wt % and are replaced by Cl-bearing phlogopite (0.4–1.1 wt % Cl). Interaction with H2O-KCl fluid does not, however, affect clinopyroxene and forsterite, which are the Al poorest phases of the system. Chlorine stabilizes phlogopite at relatively high temperatures in equilibrium with melt at temperatures much higher than the solidus (>1200°C). The compositional evolution of melt generated during the melting of model peridotite in the presence of H2O-KCl fluid is controlled, on the one hand, by the solubility of the H2O-KCl fluid in the melt and, on the other hand, by phlogopite stability above the solidus. At temperatures below 1050°C, at which phlogopite does not actively participate in melting reactions, fluid dissolution results in SiO2-undersaturated (35–40 wt %) and MgO-enriched (up to 45 wt %) melts containing up to 4–5 wt % K2O and 2–3 wt % Cl. At higher temperatures, active phlogopite dissolution and, perhaps, also the separation of immiscible aqueous chloride liquid give rise to melts containing >10 wt % K2O and 0.3–0.5 wt % Cl. Our experimental results corroborate literature data on the transformation of upper mantle peridotites into phlogopite-bearing associations and the formation of ultrapotassic and highly magnesian melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Amph :

amphibole

Ca-Ts :

Ca-Tschermak molecule

Cpx :

clinopyroxene

Di :

diopside

En :

enstatite

Fo :

forsterite

Grs :

grossular

Grt :

garnet

Jd :

jadeite

L :

melt

Mg-Ts :

Mg-Tschermak molecule

Ol :

olivine

Opx :

orthopyroxene

Phl :

phlogopite

Prg :

pargasite

Prp :

pyrope

Spl :

spinel

X KCl = KCl/(KCl + H2O):

KCl mole fraction in aqueous salt fluid

\(X_{H_2 O} = {{H_2 O} \mathord{\left/ {\vphantom {{H_2 O} {\left( {KCl + H_2 O} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {KCl + H_2 O} \right)}}\) :

H2O mole fraction in aqueous salt fluid

\(a_{H_2 O}\) :

H2O activity in aqueous salt fluid

References

  • Agrinier, P., Mével, C., Bosch, D., and Javoy, M., Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea), Earth Planet. Sci. Lett., 1993, vol. 120, pp. 187–205.

    Article  Google Scholar 

  • Amundsen, H.E.F., Evidence for liquid immiscibility in the upper mantle, Nature, 1987, vol. 327, pp. 692–695.

    Article  Google Scholar 

  • Andersen, T., O’Reilly, S.Y., and Griffin, W.L., The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 72–85.

    Article  Google Scholar 

  • Aoki, K., Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa, Contrib. Mineral. Petrol., 1975, vol. 53, pp. 145–156.

    Article  Google Scholar 

  • Aranovich, L.Ya. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 261–271.

    Article  Google Scholar 

  • Bernini D., Wiedenbeck M., Dolej D., and Keppler H., Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 117–128.

    Article  Google Scholar 

  • Bühn, B. and Rankin, A.H., Composition of natural, volatile-rich Na-Ca—REE-Sr carbonatitic fluids trapped in fluid inclusions, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 3781–3797.

    Article  Google Scholar 

  • Boettcher, A.L. and O’Neill, J.R., Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites, Am. J. Sci., 1980, vol. 280-A, pp. 594–621.

    Google Scholar 

  • Boudreau, A.E., Mathez, E.A., and McCallum, I.S., Halogen geochemistry of the Stillwater and Bushveld complexes: evidence for transport of platinum-group elements by Cl-rich fluids, J. Petrol., 1986, vol. 27, pp. 967–986.

    Article  Google Scholar 

  • Brenan, J.M., Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: implications for the F and Cl content of high P-T fluids, Earth Planet. Sci. Lett., 1993, vol. 117, pp. 251–263.

    Article  Google Scholar 

  • Butvina, V.G., Safonov, O.G., and Litvin, Yu.A., Experimental study of eclogite melting with participation of the H2O-CO2-KCl fluid at 5 GPa, Dokl. Earth Sci., 2009, vol. 427, no. 3, pp. 956–960.

    Article  Google Scholar 

  • Canil, D. and Scarfe, C.M., Origin of phlogopite in mantle xenoliths from Kostal Lake, Wells Gray Park, British Columbia, J. Petrol., 1989, vol. 30, pp. 1159–1179.

    Article  Google Scholar 

  • Carswell, D.A., Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths, Phys. Chem. Earth, vol. 9, pp. 417–429.

  • Chu, L., Enggist, A., and Luth, R.W., Effect of KCl on melting of Mg2SiO4-MgSiO3-H2O system at 5 GPa, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 565–571.

    Article  Google Scholar 

  • Delaney, J.S., Smith, J.V., Carswell, D.A., and Dawson, J.B., Chemistry of micas from kimberlites and xenoliths. II. Primary-secondary textured micas from peridotite xenoliths, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 857–72.

    Article  Google Scholar 

  • Exley, R.A., Sills, J.D., and Smith, J.V., Geochemistry of micas from the Finero spinel-lherzolite, Italian Alps, Contrib. Mineral. Petrol., 1982, vol. 81, pp. 59–63.

    Article  Google Scholar 

  • Filiberto, J. and Treiman, A.H., The effect of chlorine on the liquidus of basalt: first results and implications for basalt genesis on Mars and Earth, Chem. Geol., 2009, vol. 263, pp. 60–68.

    Article  Google Scholar 

  • Foley, S.F., Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints, Lithos, 1992, vol. 28, pp. 187–204.

    Article  Google Scholar 

  • Frezzotti, M.-L., Touret, J.L.R., Lustenhauwer, W.J., and Neumann, E.-R., Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary Islands: tracking the mantle metasomatic fluids, Eur. J. Mineral., 1994, vol. 6, pp. 805–817.

    Google Scholar 

  • Frezzotti, M.-L., Ferrando, S., Peccerillo, A., Petrelli, M., Tecce, F., and Perucchi, A., Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara (Lake Tana region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of continental flood basalts, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 3023–3039.

    Article  Google Scholar 

  • Frezzotti, M.-L., Ferrando, S., Tecce, F., and Castelli, D., Water content and nature of solutes in shallow-mantle fluids from fluid inclusions, Earth Planet. Sci. Lett., 2012, vol. 351–352, pp. 70–83.

    Article  Google Scholar 

  • Hansteen, T.H., Andersen, T., Neumann, E.-R., and Jelsma, H., Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 242–254.

    Article  Google Scholar 

  • Harlov, D.E. and Melzer, S., Experimental partitioning of Rb and K between phlogopite and concentrated (K, Rb)Cl brine: implication for the role of concentrated KCl brines in the depletion of Rb in phlogopite and the stability of phlogopite during charnockite genesis, Lithos, 2002, vol. 64, pp. 15–28.

    Article  Google Scholar 

  • Harlow, G.E., Diopside + F-rich phlogopite at high P and T: systematics, crystal chemistry and the stability of KMgF3, clinohumite and chondrodite, Geol. Materi. Res., 2002, vol. 4, no. 3, pp. 1–28.

    Google Scholar 

  • Inoue, T., Effect of water on melting phase relations and melt composition in the system MgSiO3-H2O up to 15 GPa, Phys. Earth Planet. Int., 1994, vol. 85, pp. 237–263.

    Article  Google Scholar 

  • Ionov, D.A., Bushlyakov, I.N., and Kovalenko, V.I., Mineral carriers of halogens in upper mantle: content of F and Cl in mantle phlogopites, amphibole, and apatite from Shavaryn-Tsaram volcano, Mongolia, in Glubinnye ksenolity i stroenie litosfery (Deep-Seated Xenoliths and Lithosphere Structure), Moscow: Nauka, 1987, pp. 117–127.

    Google Scholar 

  • Jenkins, D.M. and Newton, R.C., Experimental determination of spinel peridotite to garnet peridotite inversion at 900 and 1000°C in the system CaO-MgO-Al2O3-SiO2, and at 900°C with natural garnet and olivine, Contrib. Mineral. Petrol., 1979, vol. 68, pp. 407–419.

    Article  Google Scholar 

  • Kamenetsky, V.S., Grutter, H., Kamenetsky, M.B., and Gomann, K., Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate, Chem. Geol., 2012. in press doi: dx.doi.org/10.1016/j.chemgeo.2012.09.022..

    Google Scholar 

  • Kamenetsky, V.S., Maas, R., Kamenetsky, M.B., Paton, C., Phillips, D., Golovin, A.V., and Gornova, M.A., Chlorine from the mantle: magmatic halides in the Udachnaya-East kimberlite, Siberia Earth, Planet. Sci. Lett., 2009, vol. 285, pp. 96–104.

    Article  Google Scholar 

  • Klemme, S. and O’Neill, H.S.C., The near-solidus transition from garnet lherzolite to spinel lherzolite, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 237–248.

    Article  Google Scholar 

  • Konzett, J., Rhede, D., and Frost, D.J., The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 277–296.

    Article  Google Scholar 

  • Kushiro, I. and Aoki, K., Origin of some eclogite inclusions in kimberlite, Am. Mineral., 1968, vol. 53, pp. 1347–1367.

    Google Scholar 

  • Litasov, K.D., Safonov, O.G., and Ohtani, E., Origin of Clbearing silica-rich melt inclusions in diamond: experimental evidences for eclogite connection, Geology, 2010, vol. 38, pp. 1131–1134.

    Article  Google Scholar 

  • Lloyd, F.E., Edgar, A.D., Forsyth, D.M., and Barnett, R.L., The paragenesis of upper-mantle xenoliths from the Quaternary volcanics south-east of Gees, West Eifel, Germany, Mineral. Mag., 1991, vol. 55, pp. 95–112.

    Article  Google Scholar 

  • Matson, D.W., Muenow, D.W., and Garcia, M.O., Volatile contents of phlogopite micas from South African kimberlite, Contrib. Mineral. Petrol., 1986, vol. 93, pp. 399–408.

    Article  Google Scholar 

  • Modreski, P.J. and Boettcher, A.L., Phase relationships of phlogopite in the system K2O-MgO-CaO-Al2O3-SiO2-H2O to 35 kilobars: a better model for micas in the interior of the Earth, Am. J. Sci., 1973, vol. 273, pp. 385–414.

    Article  Google Scholar 

  • Mysen, B.O. and Boettcher, A.L., Melting of a hydrous mantle: I. phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen, J. Petrol., 1975, vol. 16, pp. 520–548.

    Google Scholar 

  • Naemura, K., Hirajima, T., and Svojtka, M., The pressure-temperature path and the origin of phlogopite in spinelgarnet peridotites from the Blansky-Les Massif of the Moldanubian Zone, Czech Republic, J. Petrol., 2009, vol. 50, pp. 1795–1827.

    Article  Google Scholar 

  • Nazzareni, S., Comodi, P., Bindi, L., Safonov, O.G., Litvin, Yu.A., and Perchuk, L.L., Synthetic hypersilicic Clbearing mica in the phlogopite-celadonite join: a multimethodical characterization of the missing link between di- and tri-octahedral micas at high pressures, Am. Mineral., 2008, vol. 93, pp. 1429–1436.

    Article  Google Scholar 

  • Newton, R.C. and Manning, C.E., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72.

    Google Scholar 

  • Niida, K. and Green, D.H., Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 1999, vol. 135, pp. 18–40.

    Article  Google Scholar 

  • Patiño, DouceA.E., Roden, M.F., Chaumba, J., Fleisher, C., and Yagodzinski, G., Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles, Chem. Geol., 2011, vol. 288, pp. 14–31.

    Google Scholar 

  • O’Reilly, S.Y. and Griffin, W.L., Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle, Lithos, 2000, vol. 53, pp. 217–232.

    Article  Google Scholar 

  • Ryabchikov, I.D., Termodinamika flyuidnoi fazy granitnykh magm. Nauka (Thermodynamics of the Fluid Phase of Granitoid Magmas), Moscow: Nauka, 1975.

    Google Scholar 

  • Safonov, O.G., Levykina, O.A., Perchuk, L.L., and Litvin, Yu.A., Liquid immiscibility and phase equilibria in chloride-aluminosilicate melts at 4–7 GPa, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 119–123.

    Google Scholar 

  • Safonov, O.G., Kamafugite melts as products of interaction between peridotite and chloride-carbonate Liquids at pressures 1–7 GPa, Dokl. Earth Sci., 2011, vol. 440, no. 1, pp. 1276–1281.

    Article  Google Scholar 

  • Safonov, O.G., Chertkova, N.V., Perchuk, L.L., and Litvin, Yu.A., Experimental model for alkalic chloride-rich liquids in the upper mantle, Lithos, 2009, vol. 112S, pp. 260–273.

    Article  Google Scholar 

  • Safonov, O.G., Kamenetsky, V.S., and Perchuk, L.L., Links between carbonatite and kimberlite melts in chloride-carbonate-silicate systems: experiments and application to natural assemblages, J. Petrol., 2011, vol. 52, nos. 7–8, pp. 1307–1331.

    Article  Google Scholar 

  • Shmulovich, K.I., Graham, C.M., and Yardley, B.W.D., Quartz, albite and diopside solubilities in H2O-NaCl fluids at 0.5–0.9 GPa, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 95–108.

    Article  Google Scholar 

  • Smith, J.V., Delaney, J.S., Hervig, R.L., and Dawson, J.B., Storage of F and Cl in the upper mantle: geochemical implications, Lithos, 1981, vol. 14, pp. 133–147.

    Article  Google Scholar 

  • Sobolev, N.V., Logvinova, A.M., and Efimova, E.S., Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation, Russ. Geol. Geophys., 2009, vol. 50, pp. 1234–1248.

    Article  Google Scholar 

  • Sobolev, A.V., Sobolev, S.V., Kuz’min, D.V., Malich, K.N., and Petrunin, A.G., Siberian meimechites: origin and relation to flood basalts and kimberlites, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 999–1033.

    Article  Google Scholar 

  • Stalder, R., Kronz, A., and Simon, K., Hydrogen incorporation in enstatite in the system MgO-SiO2-H2O-NaCl, Contrib. Mineral. Petrol., 2008, vol. 156, pp. 653–659.

    Article  Google Scholar 

  • Timina, T.Yu., Kovyazin, S.V., and Tomilenko, A.A., The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha Volcano (Kamchatka), Dokl. Earth Sci., 2012, vol. 442, no. 2, pp. 115–119.

    Article  Google Scholar 

  • Ulmer, P., Partial melting in the mantle wedge-the role of H2O in the genesis of mantle-derived arc-related magmas, Phys. Earth Planet. Inter., 2001, vol. 127, pp. 215–232.

    Article  Google Scholar 

  • Volfinger, M., Robert, J.-L., Vielzeuf, D., and Neiva, A.M.R., Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles), Geochim. Cosmochim. Acta, 1985, 35, pp. 37–48.

    Article  Google Scholar 

  • Walter, M.J. and Presnall, D.C., Melting behavior of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar, J. Petrol., 1994, vol. 35, pp. 329–359.

    Article  Google Scholar 

  • Webster, J.D. and De Vivo, B., Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius, Am. Mineral., 2002, vol. 87, pp. 1046–1061.

    Google Scholar 

  • Weiss, Y., Kessel, R., Griffin, W.L., and Kiflawi, I., Klein-BenDavid, O., Bell, D.R., Harris, J.W., and Navon O., A new model for evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea, Lithos, 2009, vol. 112, pp. 660–674.

    Article  Google Scholar 

  • Wendlandt, R.F. and Eggler, D.H., The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures, Am. J. Sci., 1980, vol. 280, pp. 421–458.

    Article  Google Scholar 

  • Willmore, C.C., Boudreau, A.E., Spivack, A., and Kruger, F.J., Halogens of Bushveld Complex, South Africa: δ37Cl and Cl/F evidence for hydration melting of the source in a backarc setting, Chem. Geol., 2002, vol. 182, pp. 503–511.

    Article  Google Scholar 

  • Wilson, A.H., A chill sequence to the Bushveld complex: insight into the first stage of emplacement and implications for the parental magmas, J. Petrol., 2012, vol. 53, pp. 1123–1168.

    Article  Google Scholar 

  • Zanazzi, P.F. and Pavese, A., Behavior of micas at high-pressure and high temperature, Rev. Mineral. Geochem., 2002, vol. 46, pp. 99–116.

    Article  Google Scholar 

  • Zanetti, A., Vannucci, R., Bottazzi, P., Oberti, R., and Ottolini, L., Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein, Chem. Geol., 1996, vol. 134, pp. 113–133.

    Article  Google Scholar 

  • Zhu, C. and Sverjensky, D.A., Partitioning of F-Cl-OH between minerals and hydrothermal fluids, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1837–1858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Safonov.

Additional information

Original Russian Text © O.G. Safonov, V.G. Butvina, 2013, published in Petrologiya, 2013, Vol. 21, No. 6, pp. 654–672.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safonov, O.G., Butvina, V.G. Interaction of model peridotite with H2O-KCl fluid: Experiment at 1.9 GPa and its implications for upper mantle metasomatism. Petrology 21, 599–615 (2013). https://doi.org/10.1134/S0869591113060076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591113060076

Keywords

Navigation