Skip to main content
Log in

Back-arc Paleo-Tethys related blueschist from Central Iran, south of Chupanan, Isfahan Province

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Late Paleozoic blueschists present good exposures in the Pateyar metamorphic complex (south of Chupanan, Isfahan Province). They are formed by metamorphism of primitive basaltic lavas. Petrography and microprobe analyses show that the studied rocks consist of glaucophane, actinolite, actinolitic hornblende, plagioclase (albite), sphene, magnetite, quartz and apatite. Secondary minerals are epidote, chlorite, pyrite, hematite and calcite. Mineralogical assemblages are consistent with blueschist facies metamorphism, which is followed by a retrograde metamorphism in greenschist facies. Estimation of the metamorphic conditions suggests 300–400°C and 7–11 kbar. Chemical signatures of the studied metamorphic rocks conclude that they retain main geochemical characteristics of the protoliths, which allow the petrochemical interpretations. Geochemical analyses of these blueschists show that they were originally tholeiitic basalts. Evident negative anomalies of Nb, Ta and Ti relative to Th, La and Ce, in the primitive mantle normalized spider-gram, reveal subduction role in their petrogenesis. The studied metavolcanics exhibit an intermediate chemistry between the N-MORB (normal mid-ocean ridge basalt) and IATB (island arc tholeitic basalt). Enrichment in LREE (light rare earth elements) and LILE (large ion lithophile elements) and relative depletion in HFSE (high field strength elements) suggest a back-arc basin paleotectonic setting for the Chupanan samples. The primitive magma of the analyzed samples possibly have been produced by 8–13% melting of a spinel lherzolite. The field and petrological data propose that the studied Paleozoic metavolcanics were formed in a back-arc basin above the northward subduction of Paleo-Tethys oceanic lithosphere in Central Iran. The chemical criteria of the LILE/HFSE ratio suggests that the subduction zone was young and immature during the volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aistov, L., Melnikov, B., Krivyakin, B., and Morozov, L. Geology of the Khur Area (Central Iran), Geol. Surv. Iran, Tehran, Technoexport Report, 1984, no. 20, p. 132.

    Google Scholar 

  • Alavi, M., Vaziri, K., Seyed-Emami, K., and Lasemi, Y., The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin, Geol. Soc. Am. Bull., 1997, vol. 109, 1563–1575.

    Article  Google Scholar 

  • Apted, M.J. and Liou, J.G., Phase relations among greenschists, epidote-amphibolite, and amphibolite in a basalt system, Am. J. Sci., 1983, vol. 283a, pp. 328–354.

    Google Scholar 

  • Bagheri, S., The Exotic Paleo-Tethys Terrane in Central Iran: New Geological Data from Anarak, Jandaq and Posht-e-Badam Areas, Lausanne: University of Lausanne, 2007.

    Google Scholar 

  • Balini, M., Nicora, A., Berra, F., Garzanti, E., Levera, M., Mattei, G., Muttoni, G., Zanchi, A., Bollati, C., Larghi, S., Zanchetta, S., Salamati, R., and Mossavvari, F., The Triassic stratigraphic succession of Nakhlak (central Iran), A record from an active margin, in South Caspian to Central Iran Basins, Ed. by Brunet, M.-F., Wilmsen, M., and Granath, J.W., Geol. Soc. London, Sp. Publ., 2009, vol. 312, pp. 287, U.K., pp. 312, 2009.

    Google Scholar 

  • Besse, J., Torcq, F., Gallet, Y., Ricou, L.E., Krystyn, L., and Saidi, A., “Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on the migration of the Iranian Block through the Tethyan Ocean and initial destruction of Pangaea,” Geophys. J. Int., 1998, vol. 135, pp. 77–92.

    Article  Google Scholar 

  • Deer, W.A, Howie, R.A., and Zussman, J., An Introduction to the Rock-forming Minerals, London: Longman, 1991.

    Google Scholar 

  • Floyd, P.A., Kelling, G., Gökçen S.L., and Gökçen, N., Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, South Turkey, Chem. Geol., vol. 89, pp. 263–280 (1991).

    Article  Google Scholar 

  • Fretzdorff, S., Livermore, R.A., and Devey, C.W., Leat, P.T., and Stoffers, P., Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean, J. Petrol., 2002, vol. 43, pp. 1435–1467.

    Article  Google Scholar 

  • Gamble, J.A., Wright, I.C., Woodhead, J.D., and McCulloch, M.T., Arc and back-arc geochemistry in the southern Kermadec arc—Ngatoro Basin and Offshore Taupo Volcanic Zone, SW Pacific, in Volcanism Associated with Extension at Consuming Plate Margins, Smellie, J., Ed., Geol. Soc. London Sp. Publ., 1995, vol. 81, pp. 193–212.

    Google Scholar 

  • Gribble, R.F., Stern, R.J., Newman, S., Bloomer, S.H., and O’Hearn, T., Chemical and isotopic composition of lavas from the Northern Mariana Trough: implications for magmagenesis in back-arc basins, J. Petrol., 1998, vol. 39, pp. 125–154.

    Article  Google Scholar 

  • Guiraud, M., Holland, T.J.B., and Powell, R., Calculated mineral equilibria in the greenschist-blueschist-eclogite facies in Na2O-FeO-MgO-Al2O3-SiO2-H2O: methods, results and geological applications, Contrib. Mineral. Petrol., 1990, vol. 104, pp. 85–98.

    Article  Google Scholar 

  • Gursu, S. and Goncuoglu, M.C., Early Cambrian back-arc volcanism in the Western Taurides, Turkey: implications for rifting along the Northern Gondwanan margin, in Geol. Mag., 2005, vol. 142, no. 5, pp. 617–631.

    Article  Google Scholar 

  • Hirschmann, M.M. and Stolper, E.M., A possible role for garnet pyroxenite in the origin of the garnet signature in MORB, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 185–208.

    Article  Google Scholar 

  • Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, 523–548.

    Article  Google Scholar 

  • Leake, B.E., Wolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G., Nomenclature of amphiboles, report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Eur. J. Mineral., 1997, vol. 9, pp. 623–651.

    Google Scholar 

  • LeMaitre, R.W., Igneous Rocks: a Classification and Glossary of Terms Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  • McDonough, W.F., and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Miyashiro, A., Volcanic rock series in island arcs and active continental margins, Am. J. Sci., 1974, vol. 274, pp. 321–355 (1974).

    Article  Google Scholar 

  • Muttoni, M., Mattei, M., Balini, A., Zanchi, M., Gaetani, M., and Berra, F., The drift history of Iran from the Ordovician to the Triassic, in South Caspian to Central Iran Basins, Brunet, M.-F., Wilmsen, M., and Granath, J.W., Eds., Geol. Soc. Lond. Sp. Publ., 2009, vol. 312, pp. 7–29 (2009).

    Google Scholar 

  • Niu, Y., and O’Hara, M.J., Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations, J. Geophys. Res., 2003, vol. 108, no. (B4). doi:10.1029/2002JB002048 (2003).

    Google Scholar 

  • Pearce, J.A. and Gale, G.H., Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks, in Volcanic Processes in Ore Genesis, Gass, I.G., Ed. Geol. Soc. London Sp. Publ., 1977, vol. 7, pp. 14–24.

    Google Scholar 

  • Pearce, J.A. and Stern, R.J., Origin of back-arc basin magmas: trace element and isotopic perspectives, in Backarc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Christie, D.M., Fisher, C.R., Lee, S.-M., and Givens, S., Eds., Geophys. Monogr. Ser., Am. Geophys. Union, 2006, vol. 166, pp. 63–86.

    Article  Google Scholar 

  • Saunders, A.D. and Tarney, J., Geochemical characteristics of basaltic volcanism within back-arc basins, in Marginal Basin Geology, Kokelaar, B.P., and Howell, M.F., Eds., Geol. Soc. London. Sp. Publ., 1984, vol. 16, pp. 59–76.

    Google Scholar 

  • Schulz, B., Triboulet, C., and Audren, C., Pfeifer, H.R., and Gilg, A., Two-stage prograde and retrograde Variscan metamorphism of glaucophane-eclogites, blueschists and greenschists from Ile de Groix (Brittany, France), Int. J. Earth Sci., 2001, vol. 90, pp. 871–889.

    Article  Google Scholar 

  • Schumacher, J.C., The estimation of ferric iron in electron microprobe analyses of amphiboles, Eur. J. Mineral., 1997, vol. 9, pp. 643–651.

    Google Scholar 

  • Shkol’nik, S. I., Reznitsky, L.Z., and Barash, I.G., Possibility of identification of back-arc paleobasins from high-grade orthometamorphite rocks: evidence from basic crystalline schists of the Slyudyanka crystalline complex, South Baikal region, Geochem. Int., 2011, vol. 49, no. 12, 1177–1194.

    Article  Google Scholar 

  • Soffel, H., Davoudzadeh, M., Rolf, C., and Schmidt, S., New paleomagnetic data from Central Iran and a Triassic paleoreconstruction, Geol. Rund., 1996, vol. 85, pp. 293–302.

    Article  Google Scholar 

  • Sun. S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in Oceanic Basins, A.D. Saunders and M.J. Norry, Eds., Geol. Soc. London Sp. Publ., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  • Torabi, G., Late Permian lamprophyric magmatism in NE of Isfahan province, Iran: a mark of rifting in the Gandwana land, C. R. Geosci., 2009a, vol. 341, pp. 85–94.

    Article  Google Scholar 

  • Torabi, G., Chromitite potential in mantle peridotites of the Jandaq Ophiolite (Central Iran), C. R. Geosci., 2009b, vol. 341, pp. 982–992.

    Article  Google Scholar 

  • G. Torabi, Subduction-related Eocene shoshonites from the Cenozoic Urumieh-Dokhtar magmatic arc (Qaleh-Khargooshi area, West of the Yazd Province, Iran), Turk. J. Earth Sci., 2009c, vol. 18, pp. 583–613.

    Google Scholar 

  • Torabi, G., Early Oligocene alkaline lamprophyric dykes from the Jandaq Area (Isfahan Province, Central Iran): An evidence of CEIM confining oceanic crust subduction, Island Arc, 2010, vol. 19, no. 2, pp. 277–292.

    Article  Google Scholar 

  • Torabi, G., Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust, Petrology, 2011a, vol. 19, no. 7, pp. 675–689.

    Article  Google Scholar 

  • Torabi, G., Late Permian blueschist from Anarak Ophiolite (Central Iran, Isfahan Province), a mark of multi-suture closure of the Paleo-Tethys Ocean, Rev. Mex. Cienc. Geol., 2011b, vol. 28, no. 3, pp. 544–554.

    Google Scholar 

  • Torabi, G., Late Permian post-ophiolitic trondhjemites from Central Iran: a mark of subduction role in growth of Paleozoic continental crust, Island Arc, 2012, vol. 21, pp. 215–229.

    Article  Google Scholar 

  • Torabi, G., Arai, S., and Koepke, J., Metamorphosed mantle peridotites from Central Iran (Jandaq area, Isfahan Province), Neues Jahrb. Geol. P-A, 2011a, vol. 261, no. 2, pp. 129–150.

    Article  Google Scholar 

  • Torabi, G. and Hemmati, O., Alkaline basalt from the Central Iran, a mark of previously subducted paleo-Tethys oceanic crust, Petrology, 2011, vol. 19, no. 7, pp. 690–704.

    Article  Google Scholar 

  • Torabi, G., Shirdashtzadeh, N., Arai, S., and Koepke, J., Paleozoic and Mesozoic ophiolites of Central Iran: amphibolites from Jandaq, Posht-e-Badam, Nain and Ashin ophiolites, Neues Jahrb. Geol. P-A, 2011b, vol. 261(1), pp. 129–150.

    Article  Google Scholar 

  • Whitney D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., vol. 95, no. 1, 185–187 (2010).

    Article  Google Scholar 

  • Winchester, J.A. and Floyd, P.A., Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chem. Geol., 1977, vol. 20, 325–343.

    Article  Google Scholar 

  • Woodhead, J., Eggins, S., and Gamble, J., High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge, Earth Planet. Sci. Lett., 1993, vol. 1145, pp. 491–504.

    Article  Google Scholar 

  • Yaliniz, M.K., A geochemical attempt to distinguish forearc and back arc ophiolites from the “supra-subduction” Central Anatolian ophiolites (Turkey) by comparison with modern oceanic analogues, Ofioliti, 2008, vol. 33, no. 2, pp. 119–129.

    Google Scholar 

  • Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M., and Muttoni, G., The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin, in South Caspian to Central Iran Basins, Brunet, M.-F., Wilmsen, M., and Granath, J.W., Geol. Soc. London, Sp. Publ., 2009, vol. 312, 261–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodrat Torabi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torabi, G., Arai, S. Back-arc Paleo-Tethys related blueschist from Central Iran, south of Chupanan, Isfahan Province. Petrology 21, 393–407 (2013). https://doi.org/10.1134/S0869591113040073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591113040073

Keywords

Navigation