Skip to main content
Log in

Early Eocene magmatism in the Sredinnyi Range, Kamchatka: Composition and geodynamic aspects

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Migmatization and granite-forming processes were widespread in the southern Sredinnyi Range of the Kamchatka Peninsula in the Early Eocene (at approximately 52 ± 2 Ma). The paper presents data on the composition and genesis of the Early Eocene granitoids. The Malka Rise contains both equigranular peraluminous garnet-bearing granites, on the one hand, and migmatites and tonalites and trondhjemites (TTG), on the other. The petrography and petrochemistry of most granites in the Malka Rise in the Sredinnyi Range (high SiO2 concentrations, the presence of muscovite and garnet, the proportions of their Al saturation index ASI and SiO2, FeOt + MgO + TiO2, and SiO2, Al2O3/TiO2, and CaO/Na2O), and the composition of biotite in these rocks highlight their similarities with S-granites. The character of the REE patterns and the Sr and Y concentrations suggest that the granites and TTG were formed via the melting of sources of two types: metasediments and metabasites. The metasedimentary nature of the protolith of most of the granitoids also follows from similarities between the REE patterns of the granitoids and host metaterrigenous rocks of the Kolpakova and Kamchatka groups. The variations in the Rb/Ba and Rb/Sr ratios of the granites imply that their protoliths could be sedimentary rocks both depleted and enriched in pelite components. The facts that, along with S-granites, some of the granites are TTG, which likely had mafic protoliths, make the Early Eocene granites generally similar to S-granites of the Cordilleran type. The collision of the Achaivayam-Valaginskii ensimatic island arc with the Kamchatka margin of Eurasia started at 55–53 Ma and predated Early Eocene magmatism. In the course of this collision, arc complexes were obducted over continental marginal rocks, and this resulted in their rapid subsidence, crustal heating, magma generation, and the derivation of the granites, tonalites, and trondhjemites at 52 ± 2 Ma at temperatures of 645–815°C. This rapid heating (duirng no more than 3–5 Ma) required an additional heat source, which was likely the mantle. The latter heated the bottom of the crust at the detachment of the slab. The influx of mantle material resulted in intrusions of the norite-cortlandite association, which was coeval with the granites and was accompanied by Cu-Ni sulfide mineralization. The composition of the granitoids and data on the intrusions of the norite-cortlandite association suggest that mantle material was involved in Early Eocene syncollisional magma generation in Kamchatka. Newly obtained U-Pb zircon SHRIMP dates of the granitoids and recently published data on the age of the norite-cortlandite intrusions indicate that they are coeval and make it possible to recognize an Early Eocene phase of magmatic activity in Kamchatka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, A.-F.M., Nature of Biotites from Alkaline, Calc-Alkaline and Peraluminous Magmas, J. Petrol., 1994, vol. 35, pp. 525–541.

    Google Scholar 

  • Anderson, J.L. and Cullers, R.L., Middle to Upper Crustal Plutonic Construction of a Magmatic Arc and Example from the Whipple Mountains Metamorphic Core Complex. Chapter 4, Geol. Soc. Am. Mem., 1990, vol. 174, pp. 47–69.

    Google Scholar 

  • Atherton, M.P. and Ghani, A.A., Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland, Lithos, 2002, vol. 62, pp. 65–85.

    Article  Google Scholar 

  • Beard, J.S. and Lofgren, G.E., Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 Kb, J. Petrol., 1990, vol. 2, pp. 365–401.

    Google Scholar 

  • Bindeman, I.N., Vinogradov, V.I., and Valley, J.W., Archean Protolith and Accretion of Crust in Kamchatka: SHRIMP Dating of Zircons from Sredinny and Ganal Massifs, J. Geol., 2002, vol. 110, pp. 27–289.

    Article  Google Scholar 

  • Bondarenko, G.E., Ultramafic and Mafic Metavolcanics of the Sredinny Range of Kamchatka: Stratigraphic Position and Setting of Formation, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1997, vol. 72, no. 3, pp. 32–40.

    Google Scholar 

  • Bundtzen, T.K., Layer, P.W., and Sidorov, E.G., Geology, Geochemistry, and New Isotopic Ages of PGE-Ni-Cu Bearing, Mafic/Ultramafic Rocks of the Farewell and Sredinny Terranes, Alaska, USA, and Kamchatka, Russia, Abstracts with Programs. Geological Society of America, 2003, vol. 35, p. 60.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R., I- and S-Type Granites in the Lachlan Fold Belt, Trans. R. Soc. Edinburgh Earth Sci., 1992, vol. 83, pp. 1–26.

    Article  Google Scholar 

  • Crawford, M.B. and Windley, B.F., Leucogranites of the Himalaya/Karakoram: Implications for Magmatic Evolution within Collisional Belts and the Study of Collision-Related Leucogranite Petrogenesis, J. Volcanol. Geotherm. Res., 1990, vol. 44, pp. 1–19.

    Article  Google Scholar 

  • Davies, J.H. and von Blanckenburg, F., Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens, Geotektonika, 1995, vol. 129, pp. 85–102.

    Google Scholar 

  • Drummond, M.S., Defant, M.J., and Kepezhinskas, P.K., Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas, Trans. R. Soc. Edinburgh. Earth Sci., 1996, vol. 87, pp. 205–215.

    Article  Google Scholar 

  • England, P.C. and Thompson, A.B., Pressure-Temperature-Time Paths of Regional Metamorphism. I. Heat Transfer during Evolution of Regions of Thickened Continental Crust, J. Petrol., 1984, vol. 25, pp. 894–928.

    Google Scholar 

  • Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Ob”yasnitel’naya zapiska. M-b 1: 1000000 (tret’e pokolenie). List N-57 — Petropavlovsk-Kamchatskii (State Geological Map of the Russian Federation. Explanatory Note. Scale 1: 1000000. Third Generation. Sheet N-57 Petropavlovsk-Kamchatskii), Litvinov, A.F, Markovskii, B.A, Ed., St. Petersburg: VSEGEI, 2006.

    Google Scholar 

  • Harris, N. and Massey, J., Decompression and Anatexis of Himalayan Metapelites, Tectonics, 1994, vol. 13, no. 6, pp. 1537–1546.

    Article  Google Scholar 

  • Hourigan, J.K., Brandon, M.T., Soloviev, A.V., Kirmasov, A.B., Garver, J.I., Stevenson, J., and Reiners, P.W., Eocene Arc-Continent Collision and Crustal Consolidation in Kamchatka, Russian Far East, Am. J. Sci., 2009, vol. 309, pp. 333–396.

    Article  Google Scholar 

  • Hourigan, J.K., Soloviev, A.V., Ledneva, G.V., Garver, J.I., Brandon, M.T., and Reiners, P.W., Timing of Syenite Intrusions on the Eastern Slope of the Sredinnyi Range, Kamchatka: Rate of Accretionary Structure Exhumation, Geokhimiya, 2004, vol. 42, no. 2, pp. 97–105.

    Google Scholar 

  • Hourigan, J.K., Soloviev, A.V., Brandon, M.T., Garver, J.I., Palechek, T.N., and Stevenson, J., Deeply Exhumed Roots of an Eocene Arc-Continent Collision Zone, Sredinniy Range, EOS Transactions, AGU, 2004, vol. 85, no. 47, Abstract GP44A-06.

  • Ireland, T.R. and Gibson, G.M., SHRIMP Monazite and Zircon Geochronology of High-Grade Metamorphism in New Zealand, J. Metamorph. Geol., 1998, vol. 16, pp. 149–167.

    Article  Google Scholar 

  • Johnson, S.E., Schmidt, K.L., and Tate, M.C., Ring Complexes in the Peninsular Ranges Batholith, Mexico and the USA: Magma Plumbing Systems in the Middle and Upper Crust, Lithos, 2002, vol. 61, pp. 61187–208.

    Article  Google Scholar 

  • Johnson, S.E., Tate, M.C., and Fanning, C.M., New Geologic Mapping and SHRIMP U-Pb Zircon Data in the Peninsular Ranges Batholith, Baja California, Mexico: Evidence for a Suture?, Geology, 1999, vol. 27, no. 8, pp. 743–746.

    Article  Google Scholar 

  • Karta poleznykh iskopaemykh Kamchatskoi oblasti. Masshtab 1: 500000 (Map of Mineral Resources in Kamchatka. Scale 1: 500000), Litvinov, A.F, Patok, M.G, Markovskii, B.A, Ed., St. Petersburg: VSEGEI, 1999.

    Google Scholar 

  • Khanchuk, A.I., Evolyutsiya drevnei sialicheskoi kory v ostrovoduzhnykh sistemakh vostochnoi Azii (Evolution of Ancient Sialic Crust in the Island Arc Systems of East Asia), Vladivostok: DVNTs AN, 1985.

    Google Scholar 

  • Kirmasov, A.B., Solov’ev, A.V., and Hourigan, J.K., Collision and Postcollision Structural Evolution of the Andrianovka Suture, Sredinny Range, Kamchatka, Geotectonics, 2004, vol. 38, no. 4, pp. 294–316.

    Google Scholar 

  • Konnikov, E.G., Chubarov, V.M., Poletaev, V.A., and Bakhtiyarov, P.G., New Structural and Geochemical Data on the Dukuk Gabbro-Norite-Cortlandite Massif, Kamchatka, Russ. J. Pac. Geol., 2010, vol. 4, no. 6, pp. 470–482.

    Article  Google Scholar 

  • Konnikov, E.G., Chubarov, V.M., Travin, V.A., Matukov, D.I., and Sidorov, E.G., Formation Time of the Ni-Bearing Norite-Cortlandite Association of East Asia, 2006a, no. 5, pp. 516–521.

  • Konnikov, E.G., Simakin, C.G., Orsoev, D.A., Sidorov, E.G., and Chubarov, V.A., Geochemistry and Formation Conditions of Ni-Bearing Gabbro-Cortlandite Complex on the Kamchatka Peninsula, Russ. Geol. Geophys., 2006b, vol. 47, no. 12, pp. 1260–1270.

    Google Scholar 

  • Konstantinovskaya, E.A., Tektonika vostochnykh okrain Azii: strukturnoe razvitie i geodinamicheskoe modelirovanie (Tectonics of the East Asian Margins: Structural Evolution and Geodynamic Modeling), Moscow: Nauchnyi mir, 2003.

    Google Scholar 

  • Kovalenko, D.V., Paleomagnetizm geologicheskikh kompleksov Kamchatki i Yuzhnoi Koryakii (Paleomagnetism of Geological Complexes of Kamchatka and South Koryakia), Moscow: Nauchnyi mir, 2003.

    Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Vladykin, N.V., Ivanov, V.G., Kovach, V.P., Kozlovsky, A.M., Kostitsyn, Yu.A., Kotov, A.B., and Sal’nikova, E.B., Epochs of Formation, Geodynamic Setting, and Sources of Rare-Metal Magmatism in Central Asia, Petrology, 2002, vol. 10, no. 3, pp. 199–222.

    Google Scholar 

  • Kuz’min, V.K., Shokal’skii, S.P., Rodionov, N.V., and Sergeev, S.A., New U-Pb Age Data on Metamafic Rocks of Kamchatka, in Vulkanizm i geodinamika: Materialy IV Vserossiiskogo simpoziuma po vulkanologii i paleovulkanologii (Volcanism and Geodynamics: Proceedings of 4th All-Russia Symposium on Volcanology and Paleovolcanology), Petropavlovsk-Kamchatskii: IViS DVO RAN, 2009, vol. 1, pp. 388–391.

    Google Scholar 

  • Lebedev, M.M., Upper Cretaceous Crystalline Schists of Kamchatka, Sov. Geol., 1967, no. 4, pp. 57–69.

  • Luchitskaya, M.V. and Solov’ev, A.V., Campanian Stage of Granite Formation in the South of the Sredinnyi Range in Kamchatka: New U-Pb SHRIMP Data, Dokl. Earth Sci., 2010, vol. 430, no. 3, pp. 22–27.

    Article  Google Scholar 

  • Luchitskaya, M.V., Solov’ev, A.V., and Hourigan, J.K., Two Stages of Granite Formation in the Sredinny Range, Kamchatka: Tectonic and Geodynamic Setting of Granitic Rocks, Geotectonics, 2008, vol. 42, no. 4, pp. 286–304.

    Google Scholar 

  • Marchenko, A.F., Tectonic Nature, Age, and Structural Position of the Metamorphic Complexes of Kamchatka, in Voprosy magmatizma i tektoniki Dal’nego Vostoka (Problems of Far East Magmatism and Tectonics), Vladivostok: DVNTs AN SSSR, 1975, pp. 234–246.

    Google Scholar 

  • Middlemost, E.A.K., Magmas and Magmatic Rocks. Essex: Longman Group Limited, 1985, p. 123.

  • Muir, R.J., Ireland, T.R., Weaver, S.D., and Bradshaw, J.D., Ion Microprobe Dating of Paleozoic Granitoids; Devonian Magmatism in New Zealand and Correlations with Australia and Antarctica, Chem. Geol., 1996, vol. 127, nos. 1–3, pp. 191–210.

    Article  Google Scholar 

  • Nabelek, P.I. and Liu, M., Leucogranites in the Black Hills of South Dakota: The Consequence of Shear Heating during Continental Collision, Geology, 1999, vol. 27, no. 6, pp. 523–526.

    Article  Google Scholar 

  • Nabelek, P.I., Liu, M., and Sirbescu, M.-L.C., Thermo-Rheological, Shear Heating Model for Leucogranite Generation, Metamorphism, and Deformation during the Proterozoic Trans-Hudson Orogeny, Black Hills, South Dakota, Tectonophysics, 2001, vol. 342, pp. 371–388.

    Article  Google Scholar 

  • O’Connor, J.I., A Classification of Quartz-Rich Igneous Rocks Based on Feldspar Ratios, U.S. Geol. Surv. Prof. Pap., 1965, no. 525-B, pp. 79–84.

  • Patino Douce, A.E., Humphreys, E.D., and Johnston, A.D., Anatexis and Metamorphism in Tectonically Thickened Continental Crust Exemplified by the Sevier Hinterland, Western North America, Geotektonika, 1990, vol. 97, pp. 290–315.

    Google Scholar 

  • Patino Douce, A.E., What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Rocks, in Understanding Granites: Integrating New and Classical Techniques, Castro, A., Fernandez, C., and Vigneresse, J.L., Geol. Soc. Spec. Publ., 1999, vol. 168, pp. 55–76.

  • Patino Douce A.E. and Harris, N., Experimental Constraints on Himalayan Anatexis, J. Petrol., 1998, vol. 39, no. 4, pp. 689–710.

    Article  Google Scholar 

  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks, J. Petrol., 1984, vol. 25, no. 4, pp. 956–983.

    Google Scholar 

  • Rapp, R.P. and Watson, E.B., Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling, J. Petrol., 1995, vol. 36, pp. 891–931.

    Google Scholar 

  • Rapp, R.P., Watson, E.B., and Miller, C.F., Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites, Precambrian Res, 1991, vol. 51, pp. 1–25.

    Article  Google Scholar 

  • Rikhter, A.V., Structure of the Metamorphic Complex of the Sredinny Kamchatka Massif, Geotektonika, 1995, no. 1, pp. 71–78.

  • Rozen, O.M. and Fedorovskii, V.S., Kollizionnye granitoidy i rassloenie zemnoi kory (Collision Granitoids and Crustal Layering), Moscow: Nauchnyi mir, 2001.

    Google Scholar 

  • Selyangin, O.B., Cortlandite-Amphibole Pyroxenite-Hornblendite Series of the Ni-Bearing Layered Vostochnyi Geofizicheskii Intrusion, Shanuch Ore Field, Kamchatka, Vestn. KRAUNTs. Nauki O Zemle, 2006, vol. 8(2), pp. 9–29.

    Google Scholar 

  • Selyangin, O.B., New Data on the Structure and Evolution of the Ni-Bearing Layered Kuvalorog Intrusion, South Kamchatka, Vestnik KRAUNTs. Nauki O Zemle, 2007, vol. 9, no. 1, pp. 111–126.

    Google Scholar 

  • Selyangin, O.B., Tectonic Position of the Ni-Beairng Intrusions of the Sredinny Kamchatka Massif, Vestn. KRAUNTs. Nauki O Zemle, 2009, vol. 13(1), pp. 123–138.

    Google Scholar 

  • Shapiro, M.N., Raznitsin, Yu.N., Shantser, A.E., and Lander, A.V., Structure of Northeastern Surrounding of the Metamorphic Complex of the Sredinny Range, Kamchatka, in Ocherki po geologii Vostoka SSSR (Essays on the Geology of the East of the Soviet Union), Moscow: Nauka, 1986, pp. 5–21.

    Google Scholar 

  • Shapiro, M.N., Solov’ev, A.V., and Hourigan, J.K., Lateral Structural Variability in Zone of Eocene Island-Arc-Continent Collision, Kamchatka, Geotectonics, 2008, vol. 42, no. 6, pp. 469–487.

    Article  Google Scholar 

  • Sidorov, E.G., Platinum Potential of Mafic-Ultramafic Complexes of the Koryak-Kamchatka Region, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Petropavlovsk-Kamchatskii: Inst. Volcanol., 2009.

    Google Scholar 

  • Slyadnev, B.I., Khasanov, Sh.G., and Krikun, N.F., Stratigraphy, in Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Ob”yasnitel’naya zapiska. M-b 1: 1000000 (tret’e pokolenie). List N-57 -Petropavlovsk-Kamchatskii (Stage Geological Map of the Russian Federation. Explanatory Note. Scale 1: 1000000. Third Generation), Petropavlovsk-Kamchatskii: Ob”yasnitel’naya zapiska, 2006, vol. 41, pp. 9–10.

    Google Scholar 

  • Solov’ev, A.V. and Palechek, T.N., New Data on the Age of the Andrianovka Formation, Sredinny Range: The Problem of Structure of Metamorphic Complexes in the Accretion Zone, in Evolyutsiya tektonicheskikh protsessov v istorii Zemli. Materialy molodezhnoi shkoly-konferentsii XXXVII Tektonicheskogo soveshchaniya (Evolution of Tectonic Processes in the Earth’s History. Proceedings of Youth School—Conference of 38th Tectonic Conference), Moscow: GEOS, 2004, pp. 86–89.

    Google Scholar 

  • Solov’ev, A.V., Izuchenie tektonicheskikh protsessov v oblastyakh konvergentsii litosfernykh plit: metody trekovogo datirovaniya i strukturnogo analiza (Study of Tectonic Processes in Zones of Convergent Lithospheric Plates: Methods of Fission Track Dating and Structural Analysis), Moscow: Nauka, 2008.

    Google Scholar 

  • Solov’ev, A.V., Hourigan, J.K., Brendon, M.T., Garver, J.I., and Grigorenko, E.S., The Age of the Baraba Formation Inferred from the U/Pb (SHRIMP) Dating (Sredinnyi Range, Kamchatka): Geological Consequences, Stratigr. Geol. Correlation, 2004, vol. 12, no. 4, pp. 418–424.

    Google Scholar 

  • Springer, W. and Seck, H.A., Partial Fusion of Basic Granulites at 5 to 15 Kbar: Implications for the Origin of TTG Magmas, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 30–45.

    Article  Google Scholar 

  • Stepanov, V.A. and Trukhin, Yu.P., Age of the Shanuch Copper-Nickel Deposit in Kamchatka, Dokl. Earth Sci., 2007, vol. 417, pp. 1188–1192.

    Article  Google Scholar 

  • Stepanov, V.A., Mel’nikov, A.V., Sidorov, M.D., and Gvozdev, V.I., Copper-Nickel Ore Occurrences in the Stanovoi and Kamchatka Province, Geol. Razved., 2010, no. 5, pp. 33–41.

  • Sylvester, P.J., Post-Collisional Strongly Peraluminous Granites, Lithos, 1998, vol. 45, pp. 29–44.

    Article  Google Scholar 

  • Tararin, I.A., Chubarov, V.M., Ignat’ev, E.K., and Moskaleva, S.V., Geology, Mineralogy, and PGE Mineralization of the Copper-Nickel Occurrences of the Kvinum Ore Field, Sredinny Range, Kamchatka, Russ. J. Pac. Geol., 2007, vol. 26, no. 1, pp. 94–110.

    Google Scholar 

  • Tararin, I.A., Evolution of Metamorphism in the Sredinny-Kamchatka Metamorphic Zone, Tikhookean. Geol., 1988, no. 1, pp. 63–70.

  • Tararin, I.A., Granulites of the Kolpakovskaya Group in the Sredinny Range, Kamchatka: A Myth or Reality?, Petrology, 2008, vol. 16, no. 2, pp. 177–192.

    Article  Google Scholar 

  • Tate, M.C., Norman, M.D., Johnson, S.E., Fanning, C.M., and Anderson, J.L., Generation of Tonalite and Trondhjemite by Subvolcanic Fractionation and Partial Melting in the Zarza Intrusive Complex, Western Peninsular Ranges Batholith, Northwestern Mexico, J. Petrol., 1999, vol. 40, pp. 983–1010.

    Article  Google Scholar 

  • Trukhin, Yu.P., Sidorov, M.D., Stepanov, V.A., and Kungurova, V.E., Structure and Nickel Potential of the KuvalorogMafic-Ultramafic Massif, Geol. Razved., 2009, no. 6, pp. 43–49.

  • Trukhin, Yu.P., Stepanov, V.A., and Sidorov, M.D., The Kamchatka Nickel-Bearing Province, Dokl. Earth Sci., 2008, vol. 419, no. 6, pp. 214–216.

    Article  Google Scholar 

  • Velikoslavinskii, C.D., Geochemical Classification of Silicic Igneous Rocks of Major Geodynamic Environments, Petrology, 2003, vol. 11, no. 4, pp. 327–343.

    Google Scholar 

  • Watson, E.B. and Harrison, T.M., Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types, Earth Planet. Sci. Lett., 1983, vol. 64, pp. 295–304.

    Article  Google Scholar 

  • Zhegalova, G.V., Melange in the Massifs of the Gabbronorite-Cortlandite Complex of the Sredinny Range of Central Kamchatka, Geotektonika, 1981, no. 3, pp. 105–112.

  • Zhegalova, G.V., New Data on the Tectonic Structure of Central Kamchatka (Khim-Kirganik Ore Zone), in Trudy Vsesoyuznogo zaochnogo politekhnicheskogo instituta (Proceedings of All-Russia Polytechnic Institute), Moscow, 1978, vol. 117, pp. 116–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Luchitskaya.

Additional information

Original Russian Text © M.V. Luchitskaya, A.V. Soloviev, 2012, published in Petrologiya, 2012, Vol. 20, No. 2, pp. 166–207.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchitskaya, M.V., Soloviev, A.V. Early Eocene magmatism in the Sredinnyi Range, Kamchatka: Composition and geodynamic aspects. Petrology 20, 147–187 (2012). https://doi.org/10.1134/S0869591112020038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591112020038

Keywords

Navigation