Skip to main content
Log in

Solubility of water-hydrogen fluid in haplogranite, albite, and sodium disilicate melts

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Solubility curves of water-hydrogen fluid were studied using a high-pressure gas apparatus at a pressure of 200 MPa under variable fluid composition in haplogranite (Ab 39 Or 32 Qtz 29, 950°C), Na-disilicate (Na2Si2O5, 950°C), and albite melts (1200°C). The mole fraction of hydrogen in experiments was controlled directly by Ar-H2 mixtures using a specially designed cell with a Shaw membrane. \( X_{H_2 }^{Ar - H_2 } \) ranged from 0 to 1. In some experiments with haplogranite and Na-disilicate melts under oxidizing conditions, in order to increase the accuracy of experimental parameters, the fugacities of oxygen and hydrogen were controlled using the double-capsule technique and the solid-phase buffer mixtures Ni-NiO (NNO) and Co-CoO (CCO). The addition of H2 to the H2O-saturated systems (\( X_{H_2 }^{H_2 O - H_2 } \) ≥ 0.012) results in the appearance of a distinct maximum on the solubility curves at \( X_{H_2 }^{H_2 O - H_2 } \) = 0.05–0.07 (H2 mole fractions were calculated for real H2O-H2 mixtures of real gases), and the maximum content of H2O-H2 fluid increases relative to the H2O-saturated melts by 1.51 wt % for haplogranite melt at \( X_{H_2 } \) = 0.063, 2.68 wt % for albite melt at \( X_{H_2 } \) = 0.066, and 3.54 wt % for Na-disilicate melt at \( X_{H_2 } \) = 0.067. A further increase in H2 content in the gas mixture decreases the solubility of H2O-H2 fluid in the melts, and under pure H2 pressure, the contents of fluid components are 0.08 wt % in haplogranite melt and 0.06 wt % in albite melt. The 1H NMR study of aluminosilicate and Na-silicate glasses obtained under the pressure of H2O and H2O-H2 fluids suggests different mechanisms of the dissolution of H2O and H2O-H2 fluids in magmatic melts. In addition to the spectra of dissolved water fluid, the spectra of quenched glasses synthesized under H2O-H2 fluid pressure exhibited a narrow line of molecular hydrogen with a width at half height of 1.8–2.0 kHz at \( X_{H_2 } \) ≥ 0.653 for albite and \( X_{H_2 } \) ≥ 0.063 for Na-disilicate and two lines at \( X_{H_2 } \) ≥ 0.063 for the haplogranite composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abragam, A., Yadernyi magnetizm (Nuclear Magnetism), Moscow: Izd-vo Inostrannaya literatura, 1963.

    Google Scholar 

  2. Bartholomew, R.F. and Schreurs, J.W.H., Wide-Line NMR Study of Protons in Hydrosilicate Glasses of Different Water Content, J. Non-Cryst. Solids, 1980, vol. 38/39, pp. 679–684.

    Article  Google Scholar 

  3. Bezmen, N.I., Fed’kin, A.V., and Zaraisky, G.P., Experimental Study of Phosphorus and Fluorine Influence on the Superliquidus Differentiation of Granite Melts: Preliminary Data, Exp. Geosci. 1999, vol. 8, no. 1, pp. 49–53.

    Google Scholar 

  4. Bezmen, N.I., Gorbachev, P.N., Shalynin, A.I., Asif, M., and Naldrett, A.J., Solubility of Platinum and Palladium in Silicate Melts under High Water Pressure as a Function of Redox Conditions, Petrologiya, 2008, vol. 16, no. 2, pp. 174–190 [Petrology (Engl. Transl.), vol. 16, no. 2, pp. 161–176].

    Google Scholar 

  5. Bezmen, N.I., High Pressure Gas Media Apparatus for Controlling Fugacity of Hydrogen-Bearing Fluids Systems, in Proceedings of 1st Indo-Soviet Workshop of Experimental Mineralogy and Petrology, Delhi, 1987 Gaur, V.K. and Gupta, A.K., Eds, Delhi: Government of India Publ., 1989, pp. 9–15.

    Google Scholar 

  6. Bezmen, N.I., Superliquidus Differentiation of Fluidbearing Magmatic Melts under Reducing Conditions as a Possible Mechanism of Formation of Layered Massifs: Experimental Investigations, Petrologiya, 2001, vol. 9, no. 4, pp. 398–416 [Petrology (Engl. Transl.), vol. 9, no. 4, pp. 345–361].

    Google Scholar 

  7. Bezmen, N.I., Zharikov, V.A., Epelbaum, M.B., Zavel’sky, V.O., Dikov, Y.P., Suk, N.I., and Koshemchuk, S.K., The System NaAlSi3O8-H2O-H2 (1200°C, 2 Kbar): The Solubility and Interaction Mechanism of Fluid Species with Melt, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 89–97.

    Article  Google Scholar 

  8. Bezmen, N.I., Zharikov, V.A., Zavel’skii, V.O., and Kalinichev, A.G., Melting of Alkali Aluminosilicate Systems under Hydrogen-Water Fluid Pressure, P tot = 2 kbar, Petrologiya, 2005, vol. 13, no. 4, pp. 451–472 [Petrology (Engl. Transl.), vol. 13, no. 5, pp. 407–426].

    Google Scholar 

  9. Bezmen, N.I., Zharikov, V.A., Zavel’skii, V.O., Koshemchuk, S.K., and Suk, N.I., Albite-Hydrogen-Water System: Solubility of fluid Components (P = 200 MPa, T = 1200°C), Geokhimiya, 1990, no. 5, pp. 640–648.

  10. Chekhmir, A.S., Simakin, A.G., and Epel’baum, M.B., Dinamicheskie yavleniya vo flyuidnykh magmaticheskikh sistemakh (Dynamic Phenomena in Fluid Magmatic Systems), Moscow: Nauka, 1991.

    Google Scholar 

  11. Chou, I-M., Permiability of Precious Metals to Hydrogen at 2 Kb Total Pressure and Elevated Temperatures, Am. J. Sci., 1986, vol. 286, pp. 638–658.

    Article  Google Scholar 

  12. Epel’baum, M.B., Salova, T.P., and Varshal, B.G., Water Influence on the Coordinatio of Aluminum Ions in the Water-Bearing Aluminosilicate Glasses, Neorg. Mater., 1975, vol. 4, no. 9, pp. 11–15.

    Google Scholar 

  13. Eugster, H.P. and Skippen, G.B., Igneous and Metamorphic Reactions Involving Gas Equilibria, in Researches in Geochemistry, Barton, P., Ed., New York: Willey, 1967, vol. 2, pp. 492–520.

    Google Scholar 

  14. Fed’kin, A., Seltman, R., Bezmen, N., and Zaraisky, G., Experimental Testing of Line Rocks in Li-F granites: Evidence from Superliquidus Experiments with F and P added, Bull. Czech Geol. Surv., 2002, vol. 77, no. 2, pp. 113–125.

    Google Scholar 

  15. Fed’kin, A., Seltman, R., Rhede, D., Zaraisky, G., and Bezmen, N., Reaction of Granitic Melt with Fluorine and Phosphorus Enriched Fluids at H-O-C Conditions, in Mineral Deposits: Processes to Processing, Stanley, C.J., Ed. Rotterdam: Balkena, 1999, pp. 349–352.

    Google Scholar 

  16. Grevel, K-D. and Chatterjee, N.D., A Modified Redlich-Kwong Equation of State for H2-H2O Fluid Mixtures at High Pressures and Temperatures Above 400°C, Eur. J. Mineral, 1992, vol. 4, pp. 1303–1310.

    Google Scholar 

  17. Holloway, I.R., Compositions and Volumes of Supercritical Fluids in the Earth’s Crust, in Fluid Inclusions. Applications to Petrology, Hollister, L.S., Ed., Toronto: Mineral. Ass. Can. Publ., 1981, pp. 13–18.

    Google Scholar 

  18. Holtz, F., Behrens, H., Dingwell, D.B., and Taylor, R.P., Water Solubility in Aluminosilicate Melts of Haplogranite Composition at 2 Kbar, Chem. Geol., 1992, vol. 96, pp. 289–302.

    Article  Google Scholar 

  19. Holtz, F., Dingwell, D.B., and Behrens, H., Effects of F, B2O3 and P2O5 on the Solubility of Water in Haplogranite Melts Compared To Natural Silicate Melts, Contrib. Mineral. Petrol., 1993, vol. 113, no. 4, pp. 492–501.

    Article  Google Scholar 

  20. Jacobsson, E. and Rosen, E., Thermodynamic Studies of High Temperature Equilibria. 25. Solid State Emf Studies of the Systems Fe-FeO, Ni-NiO and Co-CoO in the Temperature Range 1000–1600 K, Scand. J. Metall., 1981, vol. 10, pp. 39–43.

    Google Scholar 

  21. Jacobsson, E., Solid State EMF Studies of the Systems FeO-Fe3O4 and Fe3O4-Fe2O3 in the Temperature Range 1000–1600 K, Scand. J. Metall, 1985, vol. 14, pp. 252–256.

    Google Scholar 

  22. Johannes, W. and Holtz, F., Petrogenesis and Experimental Petrology of Granitic Rocks, Berlin-Heidelberg: Springer-Verlag, 1996.

    Google Scholar 

  23. Keppler, H., The Influence of the Fluid Phase Composition on Solidus Temperaturesin the Haplogranite System NaAlSi3O8-KAlSi3O8-SiO2-H2O-CO2, Contrib. Mineral. Petrol., 1989, vol. 102, pp. 321–327.

    Article  Google Scholar 

  24. Lange, R.A., The Effect of H2O, CO2 and F on the Density and Viscosity of Silicate Melts, in Volatiles in Magmas, Carroll, M.R. and Holloway, J.R., Eds., Washington: Mineral. Soc. Am., 1994, Rev. Mineral., vol. 30, pp. 331–369.

    Google Scholar 

  25. Letnikov, F.A., Evolution of Fluid Regime of Endogenous Processes in the Geological Evolution of the Earth, Dokl. Akad. Nauk SSSR, 1982, vol. 226, no. 6, pp. 1438–1440.

    Google Scholar 

  26. Mel’nik, Yu.P., Termodinamicheskie svoistva gazov v usloviyakh glubinnogo petrogenezisa (Thermodynamic Properties of Gases under Conditions of Endogenous Petrogenesis), Kiev: Naukova dumka, 1978.

    Google Scholar 

  27. O’Neill, H.St.C. and Pownceby, M.I., Thermodynamic Data from Redox Reactions at High Temperatures. 1 An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, with Revised Values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers, and New Data for W-WO2 Buffer, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 296–314.

    Article  Google Scholar 

  28. O’Neill, H.St.C., System Fe-O and Cu-O: Thermodynamic Data for Equilibria Fe-“FeO”, Fe-Fe3O4, “FeO”-Fe3O4, Fe3O4-Fe2O3,Cu-Cu2O and Cu2O-CuO from Emf Measurements, Am. Mineral., 1988, vol. 73, pp. 479–486.

    Google Scholar 

  29. Persikov, E.S. and Epel’baum, M.B., Apparatus for the Investigation of Viscosity and Density of Magmatic Melts at High Pressures, in Experimental and Technique of high Gas and Solid State Pressures, Ivanov, I.P. and Litvin, Yu.A., Eds., Moscow: Nauka, 1978, pp. 94–99.

    Google Scholar 

  30. Redlich, O. and Kwong, J.N.S., On the Thermodynamic of Solutions. V. An Equation of State. Fugacities of Gaseous, Chem. Rev., 1949, vol. 44, pp. 233–244.

    Article  Google Scholar 

  31. Robie, E., Hamingway, B.S., and Fisher, J.R., Thermodynamical Properties of Minerals and Related Substance at 298.15 K and 1 bar (105 Pascals) Pressure and at High Temperatures, US. Geol. Surv. Bull., no. 1452.

  32. Schmidt, B.C., Holtz, F., and Pichavant, M., Water Solubility in Haplogranitic Melts Coexisting with H2O-H2 Fluids, Contrib. Mineral. Petrol., 1999, vol. 136, pp. 213–224.

    Article  Google Scholar 

  33. Schmidt, B.C., Holtz, F., Scaillet, B., and Pichavant, M., The Influence of H2O-H2 Fluids and Redox Conditions on Melting Temperatures in the Haplogranite System, Contrib. Mineral. Petrol., 1997, vol. 126, pp. 386–400.

    Article  Google Scholar 

  34. Shaw, H.R., Hydrogen-Water Vapor Mixture: Control of Hydrothermal Atmosphere by Hydrogen Osmosis, Science, 1963, vol. 139, pp. 1220–1222.

    Article  Google Scholar 

  35. Shmulovich, K.I., Masur, V.A., Kalinichev, A.G., and Khodorevskaya, L.I., P-V-T and Component Activity-Concentration Relations for Systems of H2O-Nonpolar Gas Type, Geochem. Int, 1980, vol. 17, pp. 18–31.

    Google Scholar 

  36. Shmulovich, K.I., Shmonov, V.M., and Zharikov, V.A., The Thermodynamics of Supercritical Fluid Systems, Adv. Phys. Chem., Saxena, S.K., Ed., Adv. Phys. Geochem, 1982, vol. 2, pp. 173–190.

  37. Simakin, A.G., Salova, T.P., and Zavel’skii, V.O., Mechanism of Water Dissolution in Sodium-Silicate Melts and Glasses: Structural Interpretation of Spectroscopic Data, Geokhimiya, 2008, no. 2, pp. 131–140 [Geochem. Int. (Engl. Transl.), vol. 46, no. 2, pp. 107–115].

  38. Slobodskoi, R.M., Reducing Intratelluric Fluids and Formation of Granitoid Batholiths, Geol. Geofiz., 1979, no. 5, pp. 22–31.

  39. Watson, E.B., Diffusion in Volatile-Bearing Magmas, in Volatiles in Magmas, Carroll, M.R. and Holloway, J.R., Eds., Washington: Mineral. Soc. Am., 1994, Rev. Mineral., vol. 30, pp. 371–411.

    Google Scholar 

  40. Zavel’sky, V.O., Salova, T.P., Bezmen, N.I., and Lundin, A.A., Behavior and Polymorphism of Water in Model Volcanic Glasses, Zh. Khim.Fiz. 2004, vol. 78, no. 4, pp. 706–719 [Russ. J. Phys. Chem., (Engl. Transl.), vol. 78, no. 4, pp. 602–614].

    Google Scholar 

  41. Zavel’sky, V.O. and Bezmen, N.I., Water in the Albite Glass (NMR Studies), Geokhimiya, 1990, no. 8, pp. 1120–1124.

  42. Zavel’sky, V.O. and Salova, T.P., The Role of Sodium in the Mechanism of Interaction of Sodium Silicate Melt with Aqueous Fluid: Evidence from 1H and 23Na NMR, Geokhimiya, 2001, no. 8, pp. 1–8 [Geochem. Int. (Engl. Transl.), vol., 39, no. 8, pp. 748–754].

  43. Zavel’sky, V.O., Bezmen, N.I., and Zharikov, V.A., Water in Albite Glasses: OH-Group, Isolated Molecules, and Clusters, J. Non-Cryst. Solids, 1998, vol. 224, pp. 225–231.

    Article  Google Scholar 

  44. Zavel’sky, V.O., Bezmen, N.I., Salova, T.P., and Lundin, A.A., 1H and 23Na NMR Spectroscopy of H2O-H2-Bearing Sodium Silicate Glasses, Geokhimiya, 2003, no. 11, pp. 1221–1226 [Geochem. Int. (Engl. Transl.), vol. 41, no. 11, pp. 1118–1122].

  45. Zavel’sky, V.O., Salova, T.P., Epelbaum, M.B., Bezmen, N.I., and Zavel’skaya, L.N., State of Nondissociated Molecules of Water Inclusions in Aluminosilicate Glasses (1H NMR and Electron Microscopy Study), Phys. Chem. Glasses, 2000, vol. 41, no. 4, pp. 182–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Bezmen.

Additional information

Original Russian Text © N.I. Bezmen, V.O. Zavel’sky, T.P. Salova, 2011, published in Petrologiya, 2011, Vol. 19, No. 2, pp. 190–204.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezmen, N.I., Zavel’sky, V.O. & Salova, T.P. Solubility of water-hydrogen fluid in haplogranite, albite, and sodium disilicate melts. Petrology 19, 183–197 (2011). https://doi.org/10.1134/S0869591111020044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591111020044

Keywords

Navigation