Skip to main content
Log in

Peralkaline silicic melts of island arcs, active continental margins, and intraplate continental settings: Evidence from the investigation of melt inclusions in minerals and quenched glasses of rocks

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Anfilogov, V. A. Abramov, V. I. Kovalenko, and V. Ya. Ogorodova, “Phase Relations in the Agpaitic Field of the Na2O-K2O-Al2O3-SiO2-H2O System at a Pressure of 1000 kg/cm2,” Dokl. Akad. Nauk SSSR 204(4), 944–948 (1972).

    Google Scholar 

  2. R. J. Arculus, and A. L. Bloomfield, “Major-Element Geochemistry of Ashes from Sites 782, 784, and 786 in the Bonin Forearc,” Proc. Sci. Res. ODP 125, 277–292 (1992).

    Google Scholar 

  3. Z. D. Atlas, J. E. Dixon, G. Sen, et al., “Melt Inclusions from Volcan Popocatepetl and Volcan de Colima, Mexico: Melt Evolution Due to Vapor-Saturated Crystallization during Ascent,” J. Volcanol. Geotherm. Res. 153, 221–240 (2006).

    Article  Google Scholar 

  4. D. K. Bailey, “Origin of Alkaline Magmas as a Result of Anatexis: Melting in the Deep Crust,” in The Alkaline Rocks, Ed. by H. Sørensen (Wiley, New York, 1974; Mir, Moscow, 1976), pp. 436–442.

    Google Scholar 

  5. D. K. Bailey and J. F. Schairer, “The system Na2O-Al2O3-Fe2O3-SiO2 at 1 Atmosphere, and the Petrogenesis of Alkaline Rocks,” J. Petrol. 7, 14–70 (1966).

    Google Scholar 

  6. F. Barberi, G. Ferrara, R. Santacroce, et al., “A Transitional Basalt-Pantellerite Sequence of Fractional Crystallization, the Boina Centre (Afar Rift, Ethiopia),” J. Petrol. 16, 22–56 (1975).

    Google Scholar 

  7. K. Berlo, J. Blundy, S. Turner, et al., “Geochemical Precursors to volcanic activity at Mount St. Helens, USA,” Science 306, 1167–1169 (2004).

    Article  Google Scholar 

  8. I. I. Bindeman and F. Yu. Dubik, “Highly-Siliceous Residual Melt as Result of Fluid-Magmatic Differentiation (by the Example of Extrusive Dacites of Mendeleev Volcano),” Dokl. Akad. Nauk SSSR 312(3), 702–706 (1990).

    Google Scholar 

  9. J. Blundy and K. Cashman, “Rapid Decompression-Driven Crystallization Recorded by Melt Inclusions from Mount St. Helens Volcano,” Geology. 33, 793–796 (2005).

    Article  Google Scholar 

  10. J. Blundy, K. Casman, and M. Humphreys, “Magma Heating by Decompression-Driven Crystallization beneath Andesite Volcanoes,” Nature 443, 76–80 (2006).

    Article  Google Scholar 

  11. A. Yu. Borisova, M. Pichavant, J.-M. Beny, et al., “Constraints on Dacite Magma Degassing and Regime of the June 15, 1991, Climactic Eruption of Mount Pinatubo (Philippines): New Data on Melt and Crystal Inclusions in Quartz,” J. Volcanol. Geotherm. Res. 145, 35–67 (2005).

    Article  Google Scholar 

  12. P. Bowden, “Oversaturated Alkaline Rocks: Granites, Pantellerites, and Comendites,” in The Alkaline Rocks, Ed. by H. Sørensen (Wiley, New York, 1974; Mir, Moscow, 1976), pp. 109–123.

    Google Scholar 

  13. N. L. Bowen, “Phase Equilibria Bearing on the Origin and Differentiation of Alkaline Rocks,” Am. J. Sci. 248-A, 75–89 (1945).

    Google Scholar 

  14. T. Churikova, G. Worner, N. Mironov, and A. Kronz, “Volatile (S, Cl and F) and Fluid Mobile Trace Element Compositions in Melt Inclusions: Implications for Variable Fluid Sources across the Kamchatka Arc,” Contrib. Mineral. Petrol. 154, 217–239 (2007).

    Article  Google Scholar 

  15. L. Civetta, M. d’Antonio, G. Orsi, and G. R. Tilton, “The Geochemistry of Volcanic Rocks from Pantelleria Island, Sicily Channel: Petrogenesis and Characteristics of the Mantle Source Region,” J. Petrol. 39, 1453–1491 (1998).

    Article  Google Scholar 

  16. P. D. Clift, G. D. Layne, Y. M. R. Najman, et al., “Temporal Evolution of Boron Flux in the NE Japan and Izu Arcs Measured by Ion-Microprobe from the Forearc Tephra Record,” J. Petrol. 44, 1211–1236 (2003).

    Article  Google Scholar 

  17. L. V. Danyushevsky, R. A. J. Leslie, A. J. Crawford, and P. Durance, “Melt Inclusions in Primitive Olivine Phenocrysts: the Role of Localized Reaction Processes in the Origin of Anomalous Compositions,” J. Petrol. 45, 2531–2553 (2004).

    Article  Google Scholar 

  18. N. W. Dunbar and P. R. Kyle, “Volatile Contents of Obsidian Clast in Tephra from the Taupo Volcanic Zone, New Zealand: Implications to Eruptive Processes,” J. Volcanol. Geotherm. Res. 49, 127–145 (1992).

    Article  Google Scholar 

  19. A. Ewart, S. R. Taylor, and A. C. Capp, “Geochemistry of the Pantellerites of Mayor Island, New Zealand,” Contrib. Mineral. Petrol. 18, 116–140 (1968).

    Article  Google Scholar 

  20. A. V. Girnis, “Olivine-Orthopyroxene-Melt Equilibrium as a Thermobarometer for Mantle-Derived Magmas,” Petrologiya 11(2), 115–127 (2003) [Petrology 11, 101–113 (2003)].

    Google Scholar 

  21. W. E. Halter, C. A. Heinrich, and T. Pettke, “Laser-Ablation ICP-MS Analysis of Silicate and Sulfide Melt Inclusions in an Andesitic Complex II: Evidence for Magma Mixing and Magma Chamber Evolution,” Contrib. Mineral. Petrol. 147, 397–412 (2004).

    Article  Google Scholar 

  22. E. Heath, R. Macdonald, H. Belkin, et al. “Magmagenesis at Soufriere Volcano, St. Vincent, Lesser Antilles Arc,” J. Petrol. 39, 1721–1764 (1998).

    Article  Google Scholar 

  23. K. Hoernle, Y. S. Zhang, and D. Graham, “Seismic and Geochemical Evidence for Large-Scale Mantle Upwelling beneath the Eastern Atlantic and Western and Central Europe,” Nature 374, 34–39 (1995).

    Article  Google Scholar 

  24. M. C. S. Humphreys, J. D. Blundy, and R. S. J. Sparks, “Shallow-Level Decompression Crystallization and Deep Magma Supply at Shiveluch Volcano,” Contrib. Mineral. Petrol. 155, 45–61 (2008).

    Article  Google Scholar 

  25. P. E. Izbekov, J. C. Eichelberger, and B. V. Ivanov, “The 1996 Eruption of Karymsky Volcano, Kamchatka: Historical Record of Basaltic Replenishment of an Andesite Reservoir,” J. Petrol. 45, 2325–2345 (2004).

    Article  Google Scholar 

  26. C. M. Johnson and P. W. Lipman, “Origin of Metaluminous and Alkaline Volcanic Rocks of the Latir Volcanic Field, Northern Rio Grande Rift, New Mexico,” Contrib. Mineral. Petrol. 100, 107–128 (1988).

    Article  Google Scholar 

  27. B. R. Jordan, H. Sigurdsson, S.N. Carey, et al., “Geochemical Variation Along and Across the Central American Miocene Paleoarc in Honduras and Nicaragua,” Geochim. Cosmochim. Acta 71, 3581–3591 (2007).

    Article  Google Scholar 

  28. J.-I. Kimura and Y. Nagahashi, “Origin of a Voluminous Iron-Enriched High-K Rhyolite Magma Erupted in the North Japan Alps at 1.75 Ma: Evidence for Upper Crustal Melting,” J. Volcanol. Geotherm. Res. 167, 81–99 (2007).

    Article  Google Scholar 

  29. V. I. Kovalenko, Petrology and Geochemistry of Rare-Metal Granitoids (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  30. V. I. Kovalenko, V. V. Yarmolyuk, I. S. Pukhtel’, et al., “Igneous Rocks and Magma Sources of the Ozernaya Zone Ophiolites, Mongolia,” Petrologiya 4(5), 453–495 (1996) [Petrology 4, 420–459 (1996)].

    Google Scholar 

  31. V. I. Kovalenko, V. B. Naumov, M. L. Tolstykh, et al., “Composition and Sources of Magmas in Medvezh’ya Caldera (Iturup Island, Southern Kuriles) from a Study of Melt Inclusions,” Geokhimiya, No. 5, 467–487 (2004) [Geochem. Int. 42, 393–413 (2004)].

  32. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Estimation of the Average Contents of H2O, Cl, F, and S in the Depleted Mantle on the Basis of the Compositions of Melt Inclusions and Quenched Glasses of Mid-Ocean Ridge Basalts,” Geokhimiya, No. 3, 243–266 (2006) [Geochem. Int. 44, 209–231 (2006)].

  33. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Average Compositions of Magmas and Mantle Sources of Mid-Ocean Ridges and Intraplate Oceanic and Continental Settings Estimated from the Data on Melt Inclusions and Quenched Glasses of Basalts,” Petrologiya 15(4), 361–396 (2007) [Petrology 15, 335–368 (2007)].

    Google Scholar 

  34. V. I. Kovalenko, A. M. Kozlovskii, V. V. Yarmolyuk, et al., “Variations in the Nd Isotopic Composition and Canonical Ratios of Incompatible Elements as Reflection of Mixing the Sources of Alkaline Granitoids and Basites of the Khaldzan Buregtei Massif and the Same Rare-Metal Deposit, Western Mongolia,” Petrologiya 17(3), 249–270 (2009) [Petrology 17, (2009)].

    Google Scholar 

  35. J. F. Larsen, “Rhyodacite Magma Storage Conditions prior to the 3430 yBP Caldera-Forming Eruption of Aniakchak Volcano, Alaska,” Contrib. Mineral. Petrol. 152, 523–540 (2006).

    Article  Google Scholar 

  36. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. A. Zanettin, “Chemical Composition of Volcanic Rocks based on the Total Alkali-Silica Diagram,” J. Petrol. 27, 745–750 (1986).

    Google Scholar 

  37. V. L. Leonov and E. N. Grib, Structural Position and Volcanism of the Quaternary Calderas of Kamchatka (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  38. Y. Liu, A. T. Anderson, C. J. N. Wilson, et al., “Mixing and Differentiation in the Oruanui rhyolitic magma, Taupo, New Zealand: Evidence from Volatiles and Trace Elements in Melt Inclusions,” Contrib. Mineral. Petrol. 151, 71–87 (2006).

    Article  Google Scholar 

  39. J. B. Lowenstern and G. A. Mahood, “New Data on Magmatic H2O Contents of Pantellerites with Implications for Petrogenesis and Eruptive Dynamics at Pantelleria,” Bull. Volcanol. 54, 78–83 (1991).

    Article  Google Scholar 

  40. R. Macdonald, D. K. Bailey, and D. S. Sutherland, “Oversaturated Peralkaline Glassy Trachytes from Kenya,” J. Petrol. 11, 507–517 (1970).

    Google Scholar 

  41. R. Macdonald, G. R. Davies, C. M. Bliss, et al., “Geochemistry of High-silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley,” J. Petrol. 28, 979–1008 (1987).

    Google Scholar 

  42. V. B. Naumov and V. I. Kovalenko, “Characteristics of Major Volatile Components of Natural Magmas and Metamorphic Fluids based on Fluid Inclusion Study,” Geokhimiya, No. 5, 590–600 (1986).

  43. V. B. Naumov, V. I. Kovalenko, A. D. Babanskii, and M. L. Tolstykh, “Genesis of Andesites: Evidence from Studies of Melt Inclusions in Minerals,” Petrologiya 5(6), 654–665 (1997) [Petrology 5, 586–596 (1997)].

    Google Scholar 

  44. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average Concentrations of Major, Volatile, and Trace Elements in Magmas of Various Geodynamic Settings,” Geokhimiya, No. 10, 1113–1124 (2004) [Geochem. Int. 42, 977–987 (2004)].

  45. V. B. Naumov, M. L. Tolstykh, E. N. Grib, et al., “Chemical Composition, Volatile Components, and Trace Elements in Melts of the Karymskii Volcanic Center, Kamchatka, and Golovnina Volcano, Kunashir Island: Evidence from Inclusions in Minerals,” Petrologiya 16(1), 3–20 (2008) [Petrology 16, 1–18 (2008)].

    Google Scholar 

  46. S. A. Nelson and J. A. Hegre, “Volcan Las Navajas, a Pliocene-Pleistocene Trachyte/Peralkaline Rhyolite Volcano in the Northwestern Mexican Volcanic Belt,” Bull. Volcanol. 52, 186–204 (1990).

    Article  Google Scholar 

  47. S. Newman, S. Epstein, and E. Stolper, “Water, Carbon Dioxide, and Hydrogen Isotopes in Glasses from the ca. 1340 A.D. Eruption of the Mono Craters, California: Constraints on Degassing Phenomena and Initial Volatile Content,” J. Volcanol. Geotherm. Res. 35, 75–96 (1988).

    Article  Google Scholar 

  48. P. Yu. Plechov, T. A. Shishkina, V. A. Ermakov, and M. V. Portnyagin, “Formation Conditions of Allivalites, Olivine-Anorthite Crystal Enclaves, in the Volcanics of the Kuril-Kamchatka Arc,” Petrologiya 16(3), 248–276 (2008) [Petrology 16, 232–260 (2008)].

    Google Scholar 

  49. M. Portnyagin, K. Hoernle, P. Plechov, et al., “Constraints on Mantle Melting and Composition and Nature of Slab Components in Volcanic Arcs from Volatiles (H2O, S, Cl, F) and Trace Elements in Melt Inclusions from the Kamchatka Arc,” Earth Planet. Sci. Lett. 255, 53–69 (2007).

    Article  Google Scholar 

  50. M. Portnyagin, R. Almeev, S. Matveev, and F. Holtz, “Experimental Evidence for Rapid Water Exchange between Melt Inclusions in Olivine and Host Magma,” Earth Planet. Sci. Lett. 272, 541–552 (2008).

    Article  Google Scholar 

  51. A. A. M. Radain, W. S. Fyfe, and R. Kerrich, “Origin of Peralkaline Granites of Saudi Arabia,” Contrib. Mineral. Petrol. 78, 358–366 (1981).

    Article  Google Scholar 

  52. R. P. Rapp, N. Shimizu, M. D. Norman, and G. S. Applegate, “Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa,” Chem. Geol. 160, 335–356 (1999).

    Article  Google Scholar 

  53. S. J. Sadofsky, M. Portnyagin, K. Hoerle, and P. van den Bogaard, “Subduction Cycling of Volatiles and Trace Elements through the Central American Volcanic Arc: Evidence from Melt Inclusions,” Contrib. Mineral. Petrol. 155, 433–456 (2008).

    Article  Google Scholar 

  54. J. F. Schairer and H. S. Yoder, Jr., “The Nature of Residual Liquids from Crystallization with Data on the System Nepheline-Diopside-Silica,” Am. J. Sci. 258-A, 273–283 (1960).

    Google Scholar 

  55. A. K. Schmitt, “Gas-Saturated Crystallization and Degassing in Large-Volume, Crystal-Rich Dacitic Magmas from the Altiplano-Puna, Northern Chile,” J. Geophys. Res. 106, 30561–30578 (2001).

    Article  Google Scholar 

  56. P. Shane, I. A. Nairn, V. C. Smith, et al., “Silicic Recharge of Multiple Rhyolite Magmas by Basaltic Intrusion during the 22.6 ka Okareka Eruption Episode, New Zealand,” Lithos 103, 527–549 (2008).

    Article  Google Scholar 

  57. A. V. Sobolev and M. Chaussidon, “H2O Concentrations in Primary Melts from Supra-Subduction Zones and Mid-Ocean Ridges: Implications for H2O Storage and Recycling in the Mantle,” Earth Planet. Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  58. J. Stix, G. D. Layne, and S. N. Williams, “Mechanisms of Degassing at Nevado del Ruiz Volcano, Colombia,” J. Geol. Soc. London 160, 507–521 (2003).

    Article  Google Scholar 

  59. S. M. Straub and G. D. Layne, “Decoupling of Fluids and Fluid-Mobile Elements during Shallow Subduction: Evidence from Halogen-Rich Andesite Melt Inclusions from the Izu Arc Volcanic Front,” Geochemistry. Geophysics. Geosystems 4, 1–24 (2003a).

    Google Scholar 

  60. S. M. Straub and G. D. Layne, “The Systematics of Chlorine, Fluorine, and Water in Izu Arc Front Volcanic Rocks: Implications for Volatile Recycling in Subduction Zones,” Geochim. Cosmochim. Acta 67, 4179–4203 (2003b).

    Article  Google Scholar 

  61. M. J. Streck and S. Wacaster, “Plagioclase and Pyroxene Hosted Melt Inclusions in Basaltic Andesites of the Current Eruption of Arenal Volcano, Costa Rica,” J. Volcanol. Geotherm. Res. 157, 236–253 (2006).

    Article  Google Scholar 

  62. J. J. Student and R. J. Bodnar, “Silicate Melt Inclusions in Porphyry Copper Deposits: Identification and Homogenization Behavior,” Can. Mineral. 42, 1583–1599 (2004).

    Article  Google Scholar 

  63. The Alkaline Rocks, Ed. by H. Sørensen (Wiley, New York, 1974; Mir, Moscow, 1976)

    Google Scholar 

  64. O. F. Tuttle, “Residual Solutions Formed by Crystallizing Aqueous Granitic Liquid,” in Physicochemical Problems of Rocks and Ores (Akad. Nauk SSSR, Moscow, 1961), Vol. 1, pp. 71–79 [in Russian].

    Google Scholar 

  65. M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, et al., “The Melt Composition and Crystallizational Conditions of Andesites from the Shiveluch Volcano in Kamchatka: Evidence from Mineral-Hosted Inclusions,” Dokl. Akad. Nauk 359(5), 676–679 (1998) [Dokl. Earth Sci. 359, 440–443 (1998)].

    Google Scholar 

  66. M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, et al., “Chemical Composition, Trace Elements, and Volatile Components of Melt Inclusions in Minerals from Andesites of the Shiveluch Volcano, Kamchatka,” Geochem. Int. 38,(Suppl. 1), 123–132 (2000).

    Google Scholar 

  67. M. L. Tolstykh, V. B. Naumov, and N. N. Kononkova, “Composition of Magmas which Formed Dacite of Dikii Greben’ Volcano (Southern Kamchatka): Evidence from the Study of Melt Inclusions,” Geokhimiya, No. 10, 1116–1121 (2000) [Geochem. Int. 38, 1020–1025 (2000)].

  68. M. L. Tolstykh, V. B. Naumov, A. Yu. Ozerov, and N. N. Kononkova, “Composition of Magmas of the 1996 Eruption at the Karymskii Volcanic Center, Kamchatka: Evidence from Melt Inclusions,” Geokhimiya, No. 5, 495–509 (2001) [Geochem. Int. 39, 447–458 (2001)].

  69. M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, et al., “Chemical Composition, Volatile Components, and Trace Elements in Andesitic Magmas of the Kurile-Kamchatka Region,” Petrologiya 11(5), 451–470 (2003) [Petrology 11, 407–425 (2003)].

    Google Scholar 

  70. B. Upton, “The Alkaline Province of Southwest Greenland,” in The Alkaline Rocks, Ed. by H. Sørensen (Wiley, New York, 1974; Mir, Moscow, 1976), pp. 221–238.

    Google Scholar 

  71. T. A. Vogel, “Melt Inclusions from Chemically Zoned Ash Flow Sheets from the Southwest Nevada Volcanic Field,” J. Geophys. Res. 101, 5591–5610 (1996).

    Article  Google Scholar 

  72. J. A. Walker, K. Roggensack, L. C. Patino, et al., “The Water and Trace Element Contents of Melt Inclusions across an Active Subduction Zone,” Contrib. Mineral. Petrol. 146, 62–77 (2003).

    Article  Google Scholar 

  73. J. B. Witter, V. C. Kress, and C. G. Newhall, “Volcan Popocatepetl, Mexico. Petrology, Magma Mixing, and Immediate Sources of Volatiles for the 1994-Present Eruption,” J. Petrol. 46, 2337–2366 (2005).

    Article  Google Scholar 

  74. V. V. Yarmolyuk and V. I. Kovalenko, Riftogenic Magmatism of Active Continental Margins and Its Ore Potential (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kovalenko.

Additional information

Original Russian Text © V.I. Kovalenko, V.B. Naumov, A.V. Girnis, V.A. Dorofeeva, V.V. Yarmolyuk, 2009, published in Petrologiya, 2009, Vol. 17, No. 4, pp. 437–456.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, V.I., Naumov, V.B., Girnis, A.V. et al. Peralkaline silicic melts of island arcs, active continental margins, and intraplate continental settings: Evidence from the investigation of melt inclusions in minerals and quenched glasses of rocks. Petrology 17, 410–428 (2009). https://doi.org/10.1134/S0869591109040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591109040067

Keywords

Navigation