Skip to main content
Log in

Role of granite intrusions for the formation of ring structures in granulite complexes: Examples from the Limpopo belt, South Africa

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Ring structures are cylindrical or sheath folds with concentrically distributed beds, often with granites in the cores. This paper reports structural, petrographic, and petrological evidence for four such structures from the Central Zone of the Limpopo complex, which were formed during granulite exhumation in Neoarchean time (event D2/M2). It was demonstrated that the orientation of linear and planar elements in the rocks are practically identical and independent of the position within the Central Zone. All existing measurements (hundreds for the four structures) project within the same fields in stereograms. The fold axes plunge SW at an angle of ∼40° within the whole area of the Central Zone of the Limpopo complex. This implies that the rocks were metamorphosed and deformed during event D2/M2, which is typical of the Neoarchean stage of the development of the Limpopo granulite complex. Local mineral equilibria and fluid inclusions were studied in a series of key rocks, and P-T paths were derived for them. A gravitation mechanism was substantiated for the ascent of granulites and accompanying granite bodies. The structure of ring complexes was evaluated on the basis of various erosion sections. It was shown that stocklike granite bodies occur at the base of each ring structure. Petrochemical and structural data were used to demonstrate that the granites (2627 Ma) had been derived by the complete or partial melting of the lower parts of the section of Neoarchean (2651 Ma) country rocks. The upwelling of a less dense granite magma synchronously with the exhumation resulted in the helical squeezing of the overlying gneisses. This led to the concentric arrangement of beds and development of a ring structure, a sheath fold containing a granite core in some sections. A preliminary numeric 2D model is considered for the ascent of a granite diapir accompanied by the downwelling of colder and denser country rocks. A better understanding of this process can be gained by 3D numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ya. Aranovich and R. C. Newton, “H2O Activity in Concentrated NaCl Solutions at Pressures and Temperatures Measured by the Brucite-Periclase Equilibrium,” Contrib. Mineral. Petrol. 125, 200–212 (1996).

    Article  Google Scholar 

  2. J. M. Barton Jr., M. C. du Toit, D. D. van Reenen, and B. Ryan, “Geochronological Studies in the SMZ of the Limpopo Mobile Belt, Southern Africa,” Geol. Soc. S. Afr. Spec. Publ. 8, 55–64 (1983).

    Google Scholar 

  3. J. M. Barton, Jr., R. Doig, C. B. Smith, et al., “Isotopic and REE Characteristics of the Intrusive Charnoenderbite and Enderbite Geographically Associated with the Matok Complex,” Precambrian Res. 55, 451–467 (1992).

    Article  Google Scholar 

  4. M. Berger, J. D. Kramers, and T. F. Nägler, “Geochemistry and Geochronology of Charnoenderbites in Northern Marginal Zone of the Limpopo Belt, Southern Africa, and Genetic Models,” Schweiz. Mineral. Petrogr. Mitt. 75, 17–42 (1995).

    Google Scholar 

  5. T. G. Blenkinsop, A. Kröner, and V. Chiwara, “Single Stage, Late Achaean Exhumation of Granulites in the Northern Marginal Zone, Limpopo Belt, Zimbabwe, and Relevance to Gold Mineralization at Renco Mine,” S. Afr. J. Geol. 107, 377–396 (2004).

    Article  Google Scholar 

  6. R. Boshoff, Formation of Major Fold Types during Distinct Geological Events in the Central Zone of the Limpopo Belt, South Africa: New Structural, Metamorphic and Geochronologic Data, MS Thesis (University of Johannesburg, 2004).

  7. R. Boshoff, D. D. van Reenen, C. A. Smit, et al., “Geologic History of the Central Zone of the Limpopo Complex: The West Alldays Area,” J. Geol. 114, 699–716 (2006).

    Article  Google Scholar 

  8. G. P. Brey and T. Kohler, “Geothermobarometry in Four-Phase Lherzolites: II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers,” J. Petrol. 31, 1353–1378 (1990).

    Google Scholar 

  9. E. Burov, C. Jaupart, and L. Guillou-Frottier, “Ascent and Emplacement of Buoyant Magma Bodies in Brittle-Ductile Upper Crust,” J. Geophys. Res. 108, 2177–2189 (2003).

    Article  Google Scholar 

  10. M. J. de Wit, “Achaean Tectonics: Wading through a Mine-Field of Controversies,” in Proceedings of 4th International Archaean Symposium, Perth, Australia, 2001, (AGSO, Perth, 2001), p. 8.

    Google Scholar 

  11. M. J. de Wit, C. Roering, R. J. Hart, et al., “Formation of an Archean Continent,” Nature 357, 553–562 (1992).

    Article  Google Scholar 

  12. V. I. Fonarev and A. A. Graphchikov, “Two-Pyroxene Thermometry: A Critical Evaluation,” in Progress in Metamorphic and Magmatic Petrology, Ed. by L. L. Perchuk (Cambridge Univ., Cambridge, 1991), pp. 65–92.

    Google Scholar 

  13. M. L. Furman and D. H. Lindsley, “Ternary-Felfspar Modelling and Thermometry,” Am. Mineral. 73, 201–215 (1988).

    Google Scholar 

  14. Geology of Granulites (Guide), Ed. by F. A. Letnikov (Irkutsk, 1981).

  15. T. V. Gerya and J.-P. Burg, “Intrusion of Ultramafic Magmatic Bodies into the Continental Crust: Numerical Simulation,” Phys. Earth Planet. Inter. 160, 124–142 (2007).

    Article  Google Scholar 

  16. T. V. Gerya, L. L. Perchuk, D. D. van Reenen, and C. A. Smit, “Two-Dimensional Numerical Modeling of Pressure-Temperature-Time Paths for the Exhumation of Some Granulite Facies Terrains in the Precambrian,” J. Geodynamics 30, 17–35 (2000).

    Article  Google Scholar 

  17. T. V. Gerya, L. L. Perchuk, W. V. Maresch, et al., “Thermal Regime and Gravitational Instability of Multi-Layered Continental Crust: Implications for the Buoyant Exhumation of High-Grade Metamorphic Rocks,” Eur. J. Mineral. 14, 687–699 (2002).

    Article  Google Scholar 

  18. V. G. Gurovich, V. N. Zemlyanukhin, E. P. Emel’yanenko, et al., Konder Massif and Its Mineral Deposits (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  19. D. J. Henry and L. G. Medaris, “Applications of Pyroxene and Olivine-Spinel Geothermometers to the Alpine Peridotites in Southwestern Montana,” Am. Mineral. 61, 1117–1144 (1976).

    Google Scholar 

  20. K. Hisada, L. L. Perchuk, T. V. Gerya, et al., “P-T-Fluid Evolution in the Mahalapye Complex, Limpopo High-Grade Terrane, Eastern Botswana,” J. Metamorph. Geol. 23, 313–334 (2005).

    Article  Google Scholar 

  21. L. Holzer, R. Frey, J. M. Barton, Jr., and J. D. Kramers, “Unraveling the Record of Successive High-Grade Event in the Central Zone of the Limpopo Belt Using Pb Single Phase Dating of Metamorphic Minerals,” Precambrian Res. 87, 87–115 (1998).

    Article  Google Scholar 

  22. L. Holzer, J. M. Barton, Jr., B. K. Paya, and J. D. Kramers, “Tectonothermal History of the Western Part of the Limpopo Belt: Tectonic Models and New Perspectives,” J. Afr. Earth Sci. 28, 383–402 (1999).

    Article  Google Scholar 

  23. D. R. Hunter and C. W. Stowe, “A Historical Review of the Origin, Composition, and Settings of Archean Greenstone Belts (pre-1980),” in Greenstone Belts, Ed by M. J. de Wit and L. D. Ashwal (Oxford Univ., Oxford, 1997), pp. 5–29.

    Google Scholar 

  24. P. Jaeckel, A. Kröner, S. L. Kamo, et al., “Late Archean to Early Proterozoic Granitoid Magmatism and High-Grade Metamorphism in the Limpopo Belt, South Africa,” J. Geol. Soc. (London) 154, 25–44 (1997).

    Article  Google Scholar 

  25. K. Kreissig, L. Holzer, R. Frei, et al., “Geochronology of the Hout River Shear Zone and the Metamorphism in the Southern Marginal Zone of the Limpopo Belt, Southern Africa,” Precambrian Res. 109, 145–173 (2000).

    Article  Google Scholar 

  26. R. Kretz, “Transfer and Exchange Equilibria in a Portion of the Pyroxene Quadrilateral As Deduced from Natural and Experimental Data,” Geochim. Cosmochim. Acta 46, 411–421 (1982).

    Article  Google Scholar 

  27. A. Kröner, P. Jaeckel, G. Brandl, et al., “Single Zircon Ages for Granitoid Gneisses in the Central Zone of the Limpopo Belt, Southern Africa, and Geodynamic Significance,” Precambrian Res. 93, 299–337 (1999).

    Article  Google Scholar 

  28. F. A. Letnikov, Granitoids of Block Terranes (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  29. D. H. Lindsley, “Phase Equilibria of Pyroxenes at Pressure > 1 Atmosphere” in Pyroxenes, Ed. by Ch. T. Prewitt, Rev. Mineral. 7, 289–307 (1980).

  30. A. M. Macgregor, “Some Milestones in the Precambrian of Southern Rhodesia,” Trans. Geol. Soc. S. Afr. 54, 27–71 (1951).

    Google Scholar 

  31. L. Millonig, A. Zeh, A. Gerdes, and R. Klemd, “Neoarchean High-Grade Metamorphism in the Central Zone of the Limpopo Belt (South Africa): Combined Petrological and Geochronological Evidence from the Bulai Pluton,” Lithos (2007), doi:10.1016/j.lithos.2007.10.001.

  32. S. Mkweli, B. S. Kamber, and M. Berger, “Westward Continuation of the Craton-Limpopo Belt Break in Zimbabwe and New Age Constrains on the Timing of the Thrusting,” J. Geol. Soc. (London) 152, 77–83 (1995).

    Article  Google Scholar 

  33. A. Nicolas and J. P. Poirier, Crystalline Plasticity and Solid State Flow in Metamorphic Rocks (Wiley, New York, 1976).

    Google Scholar 

  34. C. W. Passchier and R. A. J. Trouw, Microtectonics (Springer, Berlin, 1995).

    Google Scholar 

  35. C. W. Passchier, J. S. Myers, and A. Kröner, Field Geology of High Grade Gneiss Terrains, (Springer, Berlin, 1990).

    Google Scholar 

  36. L. L. Perchuk, “The Course of Metamorphism,” Int. Geol. Rev. 28, 1377–1400 (1987).

    Google Scholar 

  37. L. L. Perchuk, “P-T-Fluid Regimes of Metamorphism and Related Magmatism with Specific Reference to the Baikal Lake Granulites,” in Evolution of Metamorphic Belts, Ed. by J. S. Daly, R. A. Cliff, and B. W. D. Yardley, Geol. Soc. Spec. Publ. 42, 275–291 (1989).

  38. L. L. Perchuk, “Studies in Magmatism, Metamorphism, and Geodynamics,” Int. Geol. Rev. 33, 311–374 (1991).

    Article  Google Scholar 

  39. L. L. Perchuk, “Configuration of PT Trends as a Record of High-Temperature Polymetamorphism,” Dokl. Akad. Nauk 401, 217–220 (2005) [Dokl. Earth Sci. 401, 311–314 (2005)].

    Google Scholar 

  40. L. L. Perchuk, Local Equilibria and P-T Evolution of. Deep-Seated Metamorphic Complexes (IGEM RAN, Moscow, 2006) [in Russian].

    Google Scholar 

  41. L. L. Perchuk and I. V. Lavrent’eva, “Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite,” in Advances in Physical Geochemistry 3, 199–239 (1983).

    Google Scholar 

  42. L. L. Perchuk and I. D. Ryabchikov, Phase Correspondence in Mineral Systems (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  43. L. L. Perchuk and D. D. van Reenen, “On the Problem of the Mechanism of Gravitational Redistribution,” Dokl. Akad. Nauk (in press).

  44. L. L. Perchuk, L. Ya. Aranovich, K. K. Podlesskii, et al., “Precambrian Granulites of the Aldan Shield, Eastern Siberia, USSR,” J. Metamorph. Geol. 3, 265–310 (1985).

    Article  Google Scholar 

  45. L. L. Perchuk, Yu. Yu. Podladchikov, and A. N. Polyakov, “Geodynamic Modeling of Some Metamorphic Processes,” J. Metamorph. Geol. 10, 311–318 (1992).

    Article  Google Scholar 

  46. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, et al., “The Limpopo Metamorphic Belt, South Africa: 2. Decompression and Cooling Regimes of Granulites and Adjacent Rocks of the Kaapvaal Craton,” Petrologiya 4, 619–648 (1996) [Petrology 4, 571–599 (1996)].

    Google Scholar 

  47. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and C. A. Smit, “Formation and Dynamics of Granulite Complexes within Cratons,” Gondwana Res. 4, 729–732 (2001).

    Article  Google Scholar 

  48. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and C. A. Smit, “P-T Paths and Problems of High-Temperature Polymetamorphism,” Petrologiya 14, 131–167 (2006) [Petrology 14, 117–153 (2006)].

    Google Scholar 

  49. L. L. Perchuk, D. D. van Reenen, D. A. Varlamov, et al., “P-T Record of Two High-Grade Metamorphic Events in the central Zone of the Limpopo Complex, South Africa,” Lithos 103, 70–105 (2008).

    Article  Google Scholar 

  50. H. Ramberg, Gravity, Deformation and the Earth’s Crust (Academic Press, London-New-York-Toronto-San Francisco, 1981).

    Google Scholar 

  51. J. Ridley, “On the Origin and Tectonic Significance of the Charnockite Suite of the Archean Limpopo Belt, Northern Marginal Zone, Zimbabwe,” Precambrian Res. 55, 497–426 (1992).

    Article  Google Scholar 

  52. C. Roering, D. D. van Reenen, C. A. Smit, et al., “Tectonic Model for the Evolution of the Limpopo Belt,” Precambrian Res. 55, 539–552 (1992).

    Article  Google Scholar 

  53. H. R. Rollinson and T. Blenkinsop, “The Magmatic, Metamorphic, and Tectonic Evolution of the Northern Marginal Zone of the Limpopo Belt in Zimbabwe,” J. Geol. Soc. (London) 152, 66–75 (1995).

    Google Scholar 

  54. K. I. Shmulovich, Carbon Dioxide in High-Temperature Mineral-Forming Processes (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  55. K. I. Shmulovich and N. V. Plyasunova, “Phase Equilibria in the System H2O-CO2-Salt (CaCl2, NaCl) at High Pressures and Temperatures,” Geochem. Int. 5, 666–684 (1993).

    Google Scholar 

  56. C. A. Smit, D. D. van Reenen, T. V. Gerya, and L. L. Perchuk, “P-T Conditions of Decompression of the Limpopo High-Grade Terrain: Record from Shear Zones,” J. Metamorph. Geol. 19, 249–268 (2001).

    Article  Google Scholar 

  57. A. A. Tomilenko and V. P. Chupin, Thermobarogeochemistry of Metamorphic Complexes (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  58. D. D. van Reenen and C. A. Smit, “The Limpopo Metamorphic Belt, South Africa: 1. Geological Setting and Relationship of the Granulite Complex with the Kaapvaal and Zimbabwe Cratons,” Petrology 4, 610–618 (1996).

    Google Scholar 

  59. D. D. van Reenen, R. Boshoff, L. L. Perchuk, et al., “Geochronological Problems of the Central Zone of the Limpopo Complex, South Africa,” Gondwana Res. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Perchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perchuk, L.L., van Reenen, D.D., Smit, C.A. et al. Role of granite intrusions for the formation of ring structures in granulite complexes: Examples from the Limpopo belt, South Africa. Petrology 16, 652–678 (2008). https://doi.org/10.1134/S0869591108070023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591108070023

Keywords

Navigation