Skip to main content
Log in

Neogene basanites in western Kamchatka: Mineralogy, geochemistry, and geodynamic setting

  • Published:
Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2007

Abstract

Neogene (N 21 -N 12 ?) K-Na alkaline rocks were found in western Kamchatka as a subvolcanic basanite body at Mount Khukhch. The basanites have a microphyric texture with olivine phenocrysts in a fine-grained doleritic groundmass. The olivine contains inclusions of Al-Cr spinel. The microlites consist of clinopyroxene, plagioclase, magnetite, and apatite, and the interstitial phases are leucite, nepheline, and analcime. The Mount Khukhch basanites are characterized by elevated concentrations of MgO, TiO2, Na2O, and K2O, high concentrations of Co, Ni, Cr, Nb, Ta, Th, U, LREE (LaN/YbN = 10.8−12.6, DyN/YbN = 1.4−1.6) at moderate concentrations of Zr, Hf, Rb, Ba, Sr, Pb, and Cu. The values of indicator trace-element ratios suggest that basanites in western Kamchatka affiliate with the group of basaltoids of the within-plate geochemical type: Ba/Nb = 10−12, Sr/Nb = 17−18, Ta/Yb = 1.3−1.6. The basanites of western Kamchatka show many compositional similarities with the Miocene basanites of eastern Kamchatka, basanites of some continental rifts, and basalts of oceanic islands (OIB). The geochemistry of these rocks suggests that the basanite magma was derived via the ∼6% partial melting of garnet-bearing peridotite source material. The crystallization temperatures of the first liquidus phases (olivine and spinel) in the parental basanite melt (1372–1369°C) and pressures determined for the conditions of the “mantle” equilibrium of the melt (25–26 kbar) are consistent with the model for the derivation of basanite magma at the garnet depth facies in the mantle. The geodynamic environment in which Neogene alkaline basaltic magmas occur in western Kamchatka was controlled by the termination of the Oligocene—Early Miocene subduction of the Kula oceanic plate beneath the continental margin of Kamchatka and the development of rifting processes in its rear zone. The deep faulting of the lithosphere and decompression-induced magma generation simultaneous with mantle heating at that time could be favorable for the derivation of mantle basite magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Al’meev and A. A. Ariskin, “Mineral—Melt Equilibria in a Hydrous Basaltic System: Computer Modeling,” Geokhimiya, No. 7, 624–636 (1996) [Geochem. Int. 34, 563–573 (1996)].

  2. F. Albarede, “How Deep do Common Basaltic Magmas from and Differentiate,” J. Geophys. Res. 97(B7), 10997–11009 (1992).

    Google Scholar 

  3. M. P. Antipov, Yu. B. Gladenkov, A. V. Zhuravlev, and A. E. Shchantser, “Structure of the near-Kamchatka Area of the Sea of Okhotsk Floor and its Cenozoic History,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 72(2), 19–25 (1997).

    Google Scholar 

  4. S. Arai, “Chemistry of Chromian Spinel in Volcanic Rocks as a Potential Guide to Magma Chemistry,” Mineral. Mag. 56, 173–184 (1992).

    Article  Google Scholar 

  5. A. A. Ariskin and G. S. Barmina, Simulation of Phase Equilibria during Crystallization of the Basaltic Magmas (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  6. A. A. Ariskin, S. S. Meshalkin, R. R. Al’meev, et al., “INFOREX Information Retrieval System: Analysis and Processing of Experimental Data on Phase Equilibria in Igneous Rocks,” Petrologiya 5, 42–67 (1997) [Petrology 5, 28–36 (1997)].

    Google Scholar 

  7. N. A. Bogdanov and V. D. Chekhovich, “Geodynamic Aspects of Cenozoic Continental Margin Volcanism of the Pacific and Bering Sea Sectors of Kamchatka,” Geol. Geofiz. 45(4), 421–429 (2004).

    Google Scholar 

  8. N. A. Bogdanov and V. D. Chekhovich, “On the Collision between the West Kamchatka and Sea of Okhotsk Plates,” Geotektonika, No. 1, 72–85 (2002) [Geotectonics 36, 63–75 (2002)].

  9. T. Churikova, F. Dorendorf, and G. Worner, “Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-Arc Geochemical Variation,” J. Petrol. 42, 1567–1593 (2001).

    Article  Google Scholar 

  10. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals. Vol. 4. Framework Silicates (Longman, London, 1962; Mir, Moscow, 1966) [in Russian].

    Google Scholar 

  11. E. Dixon, D. A. Clague, P. Wallace, and P. Poreda, “Volatiles in Alkalic Basalts from the North Arch Volcanic Field, Hawaii: Extensive Degassing of Deep Submarine-Erupted Alkalic Series Lavas,” J. Petrol. 38, 911–939 (1997).

    Article  Google Scholar 

  12. F. Dorendorf, T. Churikova, A. Koloskov, and G. Worner, “Late Pleistocene to Holocene Activity at Bakening Volcano and Surrounding Monogenetic Centers (Kamchatka): Volcanic Geology and Geochemical Evolution,” J. Volcanol. Geotherm. Res. 104, 131–151 (2000).

    Article  Google Scholar 

  13. N. I. Filatova and P. I. Fedorov, “Cenozoic Magmatism in the Korean-Japanese Region and Its Geodynamic Setting,” Geotektonika, No. 1, 54–77 (2003) [Geotectonics 37, 49–70 (2003)].

  14. G. B. Flerov, A. V. Koloskov, and S. V. Moskaleva, “Leucite and Analcime in the Upper Cretaceous-Paleogene Potassium Basaltoids, Central Kamchatka,” Dokl. Akad. Nauk 362(1), 87–89 (1998) [Dokl. Earth Sci. 362, 912–914 (1998)].

    Google Scholar 

  15. Geological and Mineral Resources Maps for Kamchatka District and Koryak Autonomous Okrug. Scale 1: 1500000, Ed. by A. F. Litvinov, B. A. Markovskii, and V. P. Zaitsev (VSEGEI, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  16. Yu. B. Gladenkov, B. A. Sal’nikov, A. K. Borovtsev, et al., Solution of the Working Interdisciplinary Regional Stratigraphic Conferences on Paleogene and Neogene of the Eastern Russia—Kamchatka, Koryak Highland, Sakhalin and Kurile Islands. Explanatory Note to Stratigraphic Schemes (GEOS, Moscow, 1998) [in Russian].

    Google Scholar 

  17. A. Gourgaud and P. M. Vincent, “Petrology of Two Continental Alkaline Intraplate Series at Emi Koussi Volcano, Tibesti, Chad,” J. Volcanol. Geotherm. Res. 129, 261–290 (2004).

    Article  Google Scholar 

  18. D.H. Green, T. J. Faloon, S. M. Eggins, and G. M. Yaxley, “Primary Magmas and Mantle Temperatures,” Eur. J. Mineral. 13, 437–451 (2001).

    Article  Google Scholar 

  19. E. N. Grib, A. B. Perepelov, and V. L. Leonov, “Geochemistry of the Volcanic Rocks of the Uzon-Geizer Depression,” Vulkanol. Seismol., No. 4, 11–28 (2003).

  20. I. S. Guziev, “Alkaline Olivine-Basalt Association of Western Kamchatka,” in Volcanism and Geochemistry of Its Products (Nauka, Moscow, 1967), pp. 126–144 [in Russian].

    Google Scholar 

  21. D. Harry and W. P. Leeman, “Partial Melting of Metasomatized Subcontinental Mantle and the Magma Source Potential of the Lower Lithosphere,” J. Geophys. Res. 100, 10255–10269 (1995).

    Article  Google Scholar 

  22. E. Hauri, “SIMS Analysis of Volatiles in Silicate Glasses, 2: Isotopes and Abundances in Hawaiian Melt Inclusions,” Chem. Geology 183, 115–141 (2002).

    Article  Google Scholar 

  23. R. Hervig, J. V. Smith, and J. B. Dawson, “Lherzolite Xenoliths in Kimberlites and Basalts: Petrogenetic and Crystallochemical Significance of Some Minor and Trace Elements in Olivine, Pyroxene, Garnet and Spinel,” Earth Sci. 77, 181–201 (1986).

    Google Scholar 

  24. A. V. Ivanov, A. B. Perepelov, M. Yu. Puzankov, et al., “Rift-and Arc-Type Basaltic Volcanism of the Sredinny Ridge, Kamchatka: Case Study of the Payalpan Volcano-Tectonic Structure,” in Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins (Dalnauka, Vladivostok, 2004), pp. 345–349 [in Russian].

    Google Scholar 

  25. A. V. Ivanov, S. V. Rasskazov, E. P. Chebykin, et al., “Y/Ho Ratios in the Late Cenozoic Basalts from Eastern Tuva, Russia: an ICP-MS Study with Enhanced Data Quality,” Geostand. Newslett. J. Geostand. Geoanal. 24, 197–204 (2000).

    Article  Google Scholar 

  26. A. V. Ivanov, S. V. Rasskazov, A. Boven, et al., “Late Cenozoic Alkaline-Ultrabasic and Alkaline Basanite Magmatism of the Rungwe Province, Tanzania,” Petrologiya 6, 228–250 (1998) [Petrology 6, 208–229 (1998)].

    Google Scholar 

  27. A. V. Koloskov, Ultramafic Inclusions in the Volcanic Rocks as Self-Regulating Geological System (Nauchnyi Mir, Moscow, 1999) [in Russian].

    Google Scholar 

  28. E. A. Konstantinovskaya, Tectonics of the East Asian Margin: Structural Evolution and Geodynamic Modeling (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  29. P. A. Koval’ and G. L. Adamchuk, Explanatory Note to Geological Map on a Scale 1: 200000. Sheet O-57-XXXIII. Western Kamchatka Series, No. 4976/1 (FGU “KamTFGI”, Petropavlovsk-Kamchatskii, 1986) [in Russian].

    Google Scholar 

  30. A. M. Kudo and D. F. Weill, “An Igneous Plagioclase Thermometer,” Contrib. Mineral. Petrol. 25, 52–65 (1970).

    Article  Google Scholar 

  31. M. J. LeBas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram,” J. Petrol. 27, 745–750 (1986).

    Google Scholar 

  32. V. A. Legler, “Cenozoic Evolution of Kamchatka in the Light of Plate Tectonics,” in Tectonics of Lithospheric Plates (VINITI, Moscow, 1977), pp. 137–169 [in Russian].

    Google Scholar 

  33. J. B. Lowenstern, “Carbon Dioxide in Magmas and Implications for Hydrothermal Systems,” Mineral. Deposita 36, 490–502 (2001).

    Article  Google Scholar 

  34. D. P. McKenzie and M. J. Bickle, “The volume and composition of melt generated by extension of the lithosphere,” J. Petrol. 29, 625–679 (1988).

    Google Scholar 

  35. T. F. Moroz, Explanatory Note to the Geological Map on a Scale of 1: 200 000. Sheet O-57-XXVI. Western Kamchatka Series (Nedra, Moscow, 1971) [in Russian].

    Google Scholar 

  36. A. B. Perepelov, O. N. Volynets, G. N. Anoshin, et al., “Western Kamchatka Alkali-Potassic Basaltoid Volcanism: Geological and Geochemical Review,” in Proceedings of International Workshop on Alkaline Magmatism and the Problems of Mantle Source, Irkutsk, Russia, 2001 (Irkutsk, 2001), pp. 52–69.

  37. A. B. Perepelov, A. V. Ivanov, U. S. Makintosh, et al., “Potassic Alkali Magmatism of Western Kamchatka—Late Eocene-Early Oligocene Inversion of Geodynamic Regimes in the Evolution of Island Arc System,” in All-Russian Scientific Conference Devoted to 10th Anniversary of Russian Foundation for Basic Research. Isotope Geochronology in Solution of the Problems of Geodynamic and Ore Genesis (Ts. Inf. Kul’t., St. Petersburg, 2003), pp. 348–354 [in Russian].

    Google Scholar 

  38. T. D. Peterson, “Peralkaline Nephelinites. I. Comparative Petrology of Shombole and Oldonyo Lengai, East Africa,” Contrib. Mineral. Petrol. 101, 458–478 (1989).

    Article  Google Scholar 

  39. M. Portnyagin, K. Hoernle, G. Avdeiko, et al., “Transition from Arc to Oceanic Magmatism at the Kamchatka-Aleutian Junction,” Geology 33, 25–28 (2005).

    Article  Google Scholar 

  40. K. Putirka, “Magma Transport at Hawaii: Inferences Based on Igneous Thermobarometry,” Geology 25, 69–72 (1997).

    Article  Google Scholar 

  41. K. Putirka, “Mantle Potential Temperatures at Hawaii, Iceland, and the Mid-Ocean Ridge System, as Inferred from Olivine Phenocrysts: Evidence for Thermally Driven Mantle Plumes,” Geochem., Geophys., Geosyst., Electr. J. Earth Sci. 6(5) (2005a).

  42. K. Putirka, “Igneous Thermometers and Barometers based on Plagioclase + Liquid Equilibria: Tests of Some Existing Models and New Calibrations,” Am. Mineral. 90, 336–346 (2005b).

    Article  Google Scholar 

  43. K. Putirka, F. J. Ryerson, and H. Mikaelian, “New Igneous Thermobarometers for Mafic and Evolved Lava Compositions, Based on Clinopyroxene + Liquid Equilibria,” Am. Mineral. 88, 1542–1554 (2003).

    Google Scholar 

  44. R. O. Sack, D. Walker, I. S. E. Carmichael, “Experimental Petrology of Alkalic Lavas: Constraints on Cotectics of Multiple Saturation in Natural Basic Liquids,” Contrib. Mineral. Petrol. 96, 1–23 (1987).

    Article  Google Scholar 

  45. A. E. Shantser and P. I. Fedorov, “Geochemistry of Lower Paleozoic Rocks of Western Kamchatka,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 74(6), 20–28 (1999).

    Google Scholar 

  46. J. F. Schairer, “The Alkali Feldspar Join in the system NaAlSiO4-KAlSiO4-SiO2,” J. Geol. 58, 512–517 (1950); (Feldspars, Inostr. Lit., Moscow, 1952).

    Article  Google Scholar 

  47. E. V. Smirnova, I. N. Mysovskaya, V. I. Lozhkin, and N. N. Pakhomova, “Estimate of Spectral Noise during the Use of ELEMENT 2 Magnetic Sector ICP-MS Analyzer: Determination of Rare Earth Elements,” in All-Russian Conference on Analytical Chemistry. Russian Analytics (Moscow, 2004), pp. 157–158 [in Russian].

  48. A. V. Sobolev and I. K. Nikogosyan, “Petrology of Magmatism of Long-Lived Mantle Jets: Hawaiian Islands (Pacific Ocean) and Reunion Island (Indian Ocean),” Petrologiya 2, 131–168 (1994).

    Google Scholar 

  49. A. V. Solov’ev, M. T. Brandon, J. I. Garver, et al., “Collision of the Olyutor Island Arc with the Eurasian Continental Margin: Kinematic and Age Aspects,” Dokl. Akad. Nauk 360, 666–668 (1998) [Dokl. Earth Sci. 361, 632–634 (1998)].

    Google Scholar 

  50. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Geol. Soc. Spec. Publ. 2, 313–346 (1989).

  51. Y. Tatsumi, T. Kogiso, and S. Nohda, “Formation of a Third Volcanic Chain in Kamchatka: Generation of Unusual Subduction-Related Magmas,” Contrib. Mineral. Petrol. 120, 117–128 (1995).

    Google Scholar 

  52. S. R. Tikhomirova, “Late Cenozoic Teschenites of Eastern Kamchatka,” Dokl. Akad. Nauk 335, 626–629 (1994).

    Google Scholar 

  53. O. N. Volynets, “Geochemical Types, Petrology and Genesis of Late Cenozoic Volcanic Rocks from the Kurile-Kamchatka Island-Arc System,” Int. Geol. Rev. 36, 373–405 (1994).

    Article  Google Scholar 

  54. O. N. Volynets and V. A. Anan’ev, “Leucite and Nepheline in the Quaternary Basalts of Kamchatka,” Dokl. Akad. Nauk SSSR 275(4), 955–958 (1984).

    Google Scholar 

  55. O. N. Volynets, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Mosk. Gos. Univ., Moscow, 1993).

    Google Scholar 

  56. O. N. Volynets, G. N. Anoshin, Yu. M. Puzankov, et al., “Potassic Basaltoids of Western Kamchatka-Occurrence of the Lamproite Series in the Island Arc System,” Geol. Geofiz., No. 11, 41–51 (1987).

  57. O. N. Volynets, S. F. Karpenko, R. U. Lei, and M. Gorring, “Isotopic Composition of Late Neogene K-Na Alkaline Basalts of Eastern Kamchatka: Indicators of the Heterogeneity of the Mantle Magma Sources,” Geokhimiya, No. 10, 1005–1018 (1997) [Geochem. Int. 35, 884–896 (1997)].

  58. O. N. Volynets, V. S. Antipin, A. B. Perepelov, et al., “Rare Earths in Late Cenozoic High-Potassic Volcanic Rocks of Kamchatka,” in Geochemistry of Volcanic Rocks of Different Geodynamic Settings (Nauka, Novosibirsk, 1986), pp. 149–165 [in Russian].

    Google Scholar 

  59. O. N. Volynets, V. S. Antipin, A. B. Perepelov, and G. N. Anoshin, “Geochemistry of Island-Arc Volcanic Series as Applied to Geodynamics (Kamchatka),” Geol. Geofiz., No. 5, 3–13 (1990b).

  60. O. N. Volynets, V. S. Antipin, G. N. Anoshin, et al., “First Data on the Geochemistry and Mineralogy of Late Cenozoic Potassic Basaltoids of Western Kamchatka,” Dokl. Akad. Nauk SSSR 284(1), 205–208 (1985).

    Google Scholar 

  61. O. N. Volynets, V. S. Uspenskii, G. N. Anoshin, et al., “Evolution of Geodynamic Regime of Magma Formation at Eastern Kamchatka in Late Conozoic based on Geochemical Data,” Vulkanol. Seismol., No. 5, 14–27 (1990a).

  62. M. A. Worthing and A. R. Wilde, “Basanites Related to Late Eocene Extension from NE Oman,” J. Geol. Soc. London 159, pp. 469–483 (2002).

    Article  Google Scholar 

  63. O. V. Yakubovich and V. I. Tarasov, “Synthesis of Monocrystals and Crystal Structure of Hydronepheline,” Dokl. Akad. Nauk SSSR 303, 1382–1386 (1988).

    Google Scholar 

  64. T. A. Yasnygina, S. V. Rasskazov, M. E. Markova, et al., “Determination of Trace Elements in the Mafic-Intermediate Volcanic Rocks by ICP-MS using Microwave Acid Decomposition,” in Applied Geochemistry. Vyp. 4. Analytical Studies, Ed. by E. K. Burenkov and A. A. Kremenetskii (IMGRE, Moscow, 2003), pp. 48–56 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Perepelov.

Additional information

Original Russian Text © A.B. Perepelov, M.Yu. Puzankov, A.V. Ivanov, T.M. Filosofova, E.I. Demonterova, E.V. Smirnova, L.A. Chuvashova, T.A. Yasnygina, 2007, published in Petrologiya, 2007, Vol. 15, No. 5, pp. 524–546.

An erratum to this article is available at http://dx.doi.org/10.1134/S0869591107060069.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelov, A.B., Puzankov, M.Y., Ivanov, A.V. et al. Neogene basanites in western Kamchatka: Mineralogy, geochemistry, and geodynamic setting. Petrology 15, 488–508 (2007). https://doi.org/10.1134/S0869591107050049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107050049

Keywords

Navigation