Skip to main content
Log in

The Upper Kedon Area of Intraplate Cenozoic Alkaline Basaltoids, Northeast Russia

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This study is concerned with the structure and composition of a sheet of Cenozoic alkaline basaltoids (basanites and trachybasalts) in the upper reaches of the Kedon River, in the Kedon Uplift of the Omolon Massif. Mineralogical and geochemical data provide evidence of an intraplate, poorly differentiated type of magmas. Geochronologic isotope data (40Ar/39Ar and K-Ar methods) indicate a Late Miocene age for the eruptions in the time span between 9 and 7 ± 1 Ma. The magma source contained a considerable percentage of pyroxenites and, judging from the isotopic composition of Sr, Nd, and Pb volcanics, it is similar to the PREMA mantle component that is also characteristic for other Cenozoic alkaline basalt occurrences in Northeast Asia. The potential temperature of the mantle beneath the volcanic area is similar, judging from theoretical calculations, to the mean value of an unexcited mantle, and is consistent with the scenario of lithospheric extension initiated by remote tectonic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Akinin, V.V., The Late Mesozoic and Cenozoic Magmatism and the Transformation of Lower Crust at the Northern Periphery of the Pacific Ocean, Dr. Sci. (Geol.–Mineral.) Dissertation, Magadan: NMRI FEB RAS, 2012, p. 320.

  2. Akinin, V.V. and Apt, Yu.E., Enmelenskie vulkany (Chukotskii p-ov): petrologiya shchelochnykh lav i glubinnykh vklyuchenii (The Enmelen Volcanoes, Chukchi Peninsula: The Petrology of Alkaline Lavas and Deep Inclusions), Magadan: SVKNII DVO RAN, 1994.

  3. Akinin, V.V., Roden, M.F., Francis, D.M., Apt, J.E., and Moll-Stalcup, E., Compositional and thermal state of the upper mantle beneath the Bering Sea basalt province: evidence from the Chukchi Peninsula of Russia, Canadian J. Earth Sciences, 1997, vol. 34, pp. 789–800.

    Article  Google Scholar 

  4. Akinin, V.V., Evdokimov, A.N., Korago, E.A., and Stupak, F.M., The neotectonic volcanism of the Arctic margin of North Eurasia, in Izmenenie okruzhayushchei sredy i klimata: prirodnye i svyazannye s nimi tekhnogennye katastrofy (Environmental and Climate Change: Natural and Related Manmade Disasters), vol. II, Noveishii vulkanizm Severnoi Evrazii: zakonomernosti razvitiya, vulkanisheskaya opasnost, svyaz s glubinnymi protsessami i izmeneniyami prirodnoi sredy i klimata (The Nettectonic Volcanism of North Eurasia: Patterns of Evolution, Volcanic Hazards, Relationships to Processes at Depth and to Environmental and Climate Change), Moscow: IGEM RAN, 2008, pp. 41–80.

  5. Fedorov, P.I., The Cenozoic Volcanism in Extension Areas, East Asian Margin, Tr. Geol. Inst. RAN, no. 537, 2006.

  6. Geologicheskaya karta SSSR (The Geological Map of the USSR), scale 1 : 1 000 000 (the new series), Sheet Q-56,57 (Srednekolymsk), Explanatory Note, Leningrad: VSEGEI, 1991.

  7. Grachev, A.F., Quaternary volcanism and Geodynamic problems of Northeast Asia, Fizika Zemli, 1999, no. 9, pp. 19–37.

  8. Gusarov, B.M., Gosudarstvennaya geologicheskaya karta SSSR (The State Geological Map of the USSR), scale 1 : 200 000, Sheet Q-57-XXXIII, XXXIV, Explanatory Note, Moscow, 1981.

  9. Hart, S.R., Heterogeneous mantle domains: signatures, genesis and mixing chronologies, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 273‒296.

    Article  Google Scholar 

  10. Hastie, A.R. and Kerr, A.C., Mantle plume or slab window?: physical and geochemical constraints on the origin of the Caribbean oceanic plateau, Earth-Science Reviews, 2010, vol. 98, pp. 283–293.

    Article  Google Scholar 

  11. Herzberg, C., Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano, Nature, 2006, vol. 444, pp. 605–609.

    Article  Google Scholar 

  12. Herzberg, C. and Asimow, P.D., Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation, Geochemistry, Geophysics, Geosystems, 2008, vol. 9, no. 9, pp. Q09001. https://doi.org/10.1029/2008GC

    Article  Google Scholar 

  13. Herzberg, C. and Asimow, P.D., PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus, Geochemistry, Geophysics, Geosystems, 2015, vol. 16. https://doi.org/10.1002/2014GC005631

  14. Hirshmann, M.M., Kogiso, T., Baker, M.B., and Stol-per, E.M., Alkalic magmas generated by partial melting of garnet pyroxenite, Geology, 2003, vol. 31. № 6. P. 481–484.

    Article  Google Scholar 

  15. Imaev, V.S., Imaeva, L.P., Kozmin, B.M., Makki, K., and Fudzhita, K., Seismotectonic processes at plate boundaries in Northeast Asia and in Alaska, Tikh. Geol., 1998, vol. 17, no. 2, pp. 3–17

    Google Scholar 

  16. Koloskov, A.V., Ul’traosnovnye vklyucheniya i vulkanity kak samoreguliruyushchayasya geologicheskaya sistema (Ultrabasic Inclusions and Volcanic Rocks as a Self-Regulated Geological System), Moscow: Nauchnyi Mir, 1999.

  17. Leonova, V.V., Akinin, V.V., Alshevsky, A.V., and Polzunenkov, G.O., New occurrences of Cenozoic alkaline basaltoids with mantle inclusions in northern Sea-of-Okhotsk area (the Seimkan occurrence), Tikh. Geol., 2015, vol. 34, no. 4, pp. 53‒66.

    Google Scholar 

  18. Ludwig, K.R., User’s manual for Isoplot Version 3.75–4.15: a geochronological toolkit for Microsoft Excel, Berkeley Geochronological Center Special Publication, 2012, vol. 5, pp. 1–75.

    Google Scholar 

  19. Lychagin, P.P., Alkaline basites in the USSR Northeast, Tikh. Geol., 1982, no. 6, pp. 85‒93.

  20. Mackey, K.G., Fujita, K., Hartse, H.E., Stead, R.J., Steck, L.K., Gunbina, L.V., Leyshuk, N., Shibaev, S.V., Koz’min, B.M., Imaev, V.S., Gordeev, E.I., Chebrov, V.N., Masal’ski, O.K., Gileva, N.A., Bormatov, V.A., Voitenok, A.A., Levin, Y.N., and Fokina, T.A., Seismicity map of Eastern Russia, 1960‒2010, Seismol. Res. Lett., 2010, vol. 81, no. 5, pp. 761–768

    Article  Google Scholar 

  21. McKenzie, D. and Bickle, M.J., The volume and composition of melt generated by extension of the lithosphere, J. Petrology, 1988, vol. 29, pp. 625–679.

    Article  Google Scholar 

  22. Menzies, M.A. and Murthy, V.R., Nd and Sr isotope geochemistry of hydrous mantle nodules and their host alkali basalts: implications for local heterogeneities in metasomatically veined mantle, Earth Planet. Sci. Lett., 1980, vol. 46, pp. 322–334.

    Article  Google Scholar 

  23. Meschede, M., A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram, Chemical Geology, 1986, vol. 56, pp. 207–218.

    Article  Google Scholar 

  24. Putirka, K.D., Thermometers and barometers for volcanic systems: Minerals, inclusions and volcanic processes, Reviews in Mineralogy and Geochemistry, 2008, vol. 69, pp. 61–120.

    Article  Google Scholar 

  25. Shpetnyi, A.P., Gosudarstvennaya geologicheskaya karta SSSR msshtaba 1 : 1 000 000 (The State Geological Map of the USSR to Scale 1 : 1 000 000), Sheet Q-57 (Zatishie), Explanatory Note, Moscow: Gosgeoltekhizdat, 1962.

  26. Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., and Nikogosian, I.K., An olivine-free mantle source of Hawaiian shield basalts, Nature, 2005, vol. 434, pp. 590–597.

    Article  Google Scholar 

  27. Stracke, A., Hofmann, A.W., and Hart, S.R., FOZO, HIMU, and the rest of the mantle zoo, Geochemistry, Geophysics, Geosystems, 2005, vol. 6. Q05007. https://doi.org/10.1029/2004GC000824

    Article  Google Scholar 

  28. Suleimanov, A.K., Andryushchenko, Yu.N., Zamozhnyaya, N.G., et al., The reflection of crustal structural features in seismic and electromagnetic fields, in Struktura i stroenie zemnoi kory Magadanskogo sektora Rossii po geologo-geofizicheskim dannym (Crustal Structure in the Magadan Sector of Russia As Inferred from Geological and Geophysical Data), Novosibirsk: Nauka, 2007, pp. 154‒164.

  29. Travin, A.V., Yudin, D.S., Vladimirov, A.G., Khromykh, S.V., Volkova, N.I., Mekhonoshin, A.S., and Kolotilina, T.B., The thermal chronology of the Chernorudskaya granulite zone, Olkhon region, western Baikal area, Geokhim., 2009, vol. 11, pp. 1181‒1199.

    Google Scholar 

  30. Tschegg, C., Ntaflos, Th., and Akinin, V.V., Polybaric petrogenesis of Neogene alkaline magmas in an extensional tectonic environment: Viliga Volcanic Field, northeast Russia, Lithos, 2011, vol. 122, nos. 1–2, pp. 13–24.

    Article  Google Scholar 

Download references

Funding

This work was supported through the VSEGEI state Assignment for the creation of third-generation geological maps (Sheet Q-57), as well as through the topic of the NEISRI FEB RAS no. 210311700312-1. Part of the analytical work was supported by the Russian Science Foundation, project no. 20-17-00169, and by the Science and Education Center, project The North, a Territory of Sustainable Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Akinin.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinin, V.V., Brusnitsyna, E.A., Kuznetsov, V.M. et al. The Upper Kedon Area of Intraplate Cenozoic Alkaline Basaltoids, Northeast Russia. J. Volcanolog. Seismol. 16, 334–348 (2022). https://doi.org/10.1134/S0742046322050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046322050025

Keywords:

Navigation