Skip to main content
Log in

Geology and petrology of the archean high-K and high-Mg Panozero massif, Central Karelia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The high-K and high-Mg Panozero central-type intrusion is located on the shore of Lake Segozero, Central Karelia, and has an age of 2737 ± 10 Ma. Detailed mapping and petrological study showed that it was formed in three magmatic cycles that were separated by lamprophyre dikes. The first cycle is composed mainly of mafic rocks (layered complex: pyroxenites-honblendites-monzogabbro) and monzonites 1; the second cycle includes monzonites 2, and the third cycle comprises monzonites 3 and quartz monzonites. The massif is cut by numerous lamprophyre dikes and breccia zones. As compared to calc-alkaline series, the studied rocks are enriched in K, Ba, Sr, P, LREE, have high mg# (mg# = 0.5–0.65), and elevated contents of Cr and Ni. The parent composition of the layered complex was determined to be monzogabbro. Model calculations showed that the compositional variations of the Panozero Complex are consistent with the fractional crystallization of monzogabbro. The melts were fractionated in an intermediate chamber and during the flowing and crystallization of the magma. The parent melt of the intrusion was formed by the partial melting of mantle enriched in some LILE, LREE, and volatiles (CO2 and H2O). The volatile enrichment of the melt manifests itself in the mineral composition of the rocks, the presence of primary gas inclusions in apatite, and diverse structural features. The comparison of the rocks of the Panozero Massif with metasomatized mantle xenoliths in the variation diagrams for incompatible elements showed that the mantle source of the Panozero Complex was metasomatized by fluid consisting of H2O and CO2 of different origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Bibikova, A. Petrova, and S. Claesson, “The Temporal Evolution of Sanukitoids in the Karelian Craton, Baltic Shield: An Ion Microprobe U-Th-Pb Isotopic Study of Zircons,” Lithos 79, 129–145 (2005).

    Article  Google Scholar 

  2. E. V. Bibikova, N. A. Arestova, V. V. Ivanikov, et al., “Isotopic Geochronology of the Archean Posttectonic Association of Sanukitoids, Syenites, and Granitoids in Central Karelia,” Petrologiya 14(1), 44–55 (2006) [Petrology 14, 39–49 (2006)].

    Google Scholar 

  3. J. L. Bodinier, R. M. Bedini, F. Simien, et al., “Distribution of Niobium, Tantalum, and Other Highly Incompatible Trace Elements in the Lithospheric Mantle: the Spinel Paradox,” Geochim. Cosmochim. Acta 60, 545–550 (1996).

    Article  Google Scholar 

  4. G. P. Brey and I. D. Ryabchikov, “Carbon Dioxide in Strongly Silica Undersaturated Melts and Origin of Kimberlite Magmas,” Neues Jahrb. Mineral. Monaysh, No. 10, 449–463 (1994).

  5. V. P. Chekulaev, “Archean ”Sanukitoids” on the Baltic Shield,” Dokl. Akad. Nauk 368(5), 676–678 (1999) [Dokl. Earth Sci. 369, 1137–1140 (1999)].

    Google Scholar 

  6. V. P. Chekulaev, N. A. Arestova, A. V. Kovalenko, and A. I. Slabunov, “Karelian Granite-Greenstone Terrane. Central Karelian Domain,” in Early Precambrian of the Baltic Shield, Ed. by S. Glebovitskii (Nauka, St. Petersburg, 2005), pp. 395–471 [in Russian].

    Google Scholar 

  7. V. P. Chekulaev, O. A. Levchenkov, V. V. Ivanikov, et al., “Composition, Age, and Sm-Nd Systematics of Archean High-Mg Granitoids (Sanukitoids) of the Panozero Pluton, Karelia,” Geokhimiya, No. 8, 817–828 (2003) [Geochem. Int. 41, 741–752 (2003)].

  8. Classification and Nomenclature of Magmatic Rocks, Ed. by O. A. Bogatikov, N. P. Mikhailov, and V. I. Gon’shakova (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  9. J. B. Dawson, “Metasomatized Harzburgites in Kimberlite and Alkaline Magmas: Enriched Restite and ”Flushed” Lherzolites,” in Mantle Metasomatism, Ed. by C. J. Hawkesworth and M. A. Menzies (Academic Press, London, 1987), pp. 125–144.

    Google Scholar 

  10. C. Dupuy, J. M. Liotard, and J. Dostal, “Zr/Hf Fractionation in Intraplate Basaltic Rocks: Carbonate Metasomatism in the Mantle Source,” Geochim. Cosmochim. Acta 56, 2417–2423 (1992).

    Article  Google Scholar 

  11. E. A. Durnworth and K. Bell, “The Turiy Massif, Kola Peninsula, Russia: Isotopic and Geochemical Evidence for Multi-Source Evolution,” J. Petrol. 42, 377–405 (2001).

    Article  Google Scholar 

  12. D. H. Eggler, “Role of CO2 in Melting Processes in the Mantle,” Carnegie Inst. Wash. Yearbook 72, pp. 457–467 (1973).

    Google Scholar 

  13. D. H. Eggler, B. O. Mysen, and M. G. Seitz, “The Solubility of CO2 in Silicate Liquids and Crystals,” Carnegie Inst. Wash. Yearbook 73, 226–228 (1974).

    Google Scholar 

  14. O. Eklund, D. Konopelko, H. Rutanen, et al., “1.8 Ga Svecofennian Post-Collisional Shoshonitic Magmatism in the Fennoscandian Shield,” Lithos 45, 87–108 (1998).

    Article  Google Scholar 

  15. A. J. Erlank, F. G. Waters, C. J. Hawkesworth, et al., “Evidence for Mantle Metasomatism in Peridotite Nodules from the Kimberley Pipes, South Africa,” in Mantle Metasomatism, Ed. by C. J. Hawkesworth and M. A. Menzies (Academic, London, 1987), pp. 221–311.

    Google Scholar 

  16. T. Furman and F. J. Spera, “Co-Mingling of Acid and Basic Magma with Implications for the Origin of Mafic I-Type Xenoliths: Field and Petrochemical Relations of An Unusual Dike Complex at Eagle Lake, Sequola National Park, California, U.S.A,” J. Volcanol. Geotherm. Res. 24(1–2), 151–178 (1985).

    Article  Google Scholar 

  17. G. O. Glebova-Kul’bakh, S. B. Lobach-Zhuchenko, N. I. Pinaeva, and K. D. Borisova, “Granites of Southern Karelia,” in Granites of Kola Peninsula and Karelia, Tr. LAGED. 15 (1963) (Akad. Nauk SSSR, Leningrad, 1963), pp. 161–334 [in Russian].

    Google Scholar 

  18. D. H. Green and M. E. Wallace, “Mantle Metasomatism by Ephemeral Carbonatite Mantle,” Nature 336, 459–462 (1988).

    Article  Google Scholar 

  19. M. Gregoire, D. R. Bell, and A. P. Le Roex, “Trace Element Geochemistry of Phlogopite-Rich Mafic Mantle Xenoliths: Their Classification and Their Relationship to Phlogopite-Bearing Peridotites and Kimberlites Revisited,” Contrib. Mineral. Petrol. 142, 603–625 (2002).

    Article  Google Scholar 

  20. N. S. Guseva, S. B. Lobach-Zhuchenko, and V. A. Bogachev, “Geology and Petrology of Calc-Alkaline Lamprophyres of Western Karelia,” in Geology and Mineral Resources of Karelia (Petrozavodsk, 2000), No. 3, pp. 87–93 [in Russian].

  21. J. Halla, “Late Archean High-Mg Granitoids (Sanukitoids) in Southern Karelian Domain, Eastern Finland: Pb and Nd Isotopic Constraints on Crust-Mantle Interactions,” Lithos 79, 161–178 (2005).

    Article  Google Scholar 

  22. J. Halla, “Origin and Palaeoproterozoic Reactivisation of Neoarchean High-K Granitoid Rocks in Eastern Finland,” Ann. Acad. Sci. Fenn. Geol.-Geogr. 162, 3–105 (2002).

    Google Scholar 

  23. J. M. Hammarstrom and E. A. Zen, “Aluminium in Hornblende: An Empirical Igneous Geobarometer,” Am. Mineral. 71, 1297–1313 (1986).

    Google Scholar 

  24. K. Hattory, S. R. Hart, and N. Shimizu, “Melt and Source Mantle Compositions in the Late Archaean: Study of Strontium and Neodymium Isotope and Trace Elements in Clinopyroxenes from Shoshonite Alkaline Rocks,” Geochim. Cosmochim. Acta 60, 4551–4562 (1996).

    Article  Google Scholar 

  25. K. Hoernle, G. Tilton, M. J. Le Bas, et al., “Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate,” Contrib. Mineral. Petrol. 142, 520–542 (2002).

    Article  Google Scholar 

  26. A. W. Hofmann, “Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements,” in Treaties on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Amsterdam, 2003), pp. 61–101.

    Google Scholar 

  27. A. W. Hofmann, K. P. Jochum, M. Seufert, and W. M. White, “Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution,” Earth Planet. Sci. Lett. 79, 33–45 (1986).

    Article  Google Scholar 

  28. L. S. Hollister, G. C. Grissom, E. K. Peters, et al., “Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons,” Am. Mineral. 72, 231–239 (1987).

    Google Scholar 

  29. D. Ionov, “Trace Element Composition of Mantle-Derived Carbonates and Coexisting Phases in Peridotite Xenoliths from Alkali Basalts,” J. Petrol. 39, 1931–1941 (1998).

    Article  Google Scholar 

  30. D. A. Ionov, C. Dupuy, S. Y. O’Reilly, et al., “Carbonated Peridotite Xenoliths from Spitsbergen Implication for Trace Element Signature of Mantle Carbonate Metasomatism,” Earth Planet. Sci. Lett. 119, 283–297 (1993).

    Article  Google Scholar 

  31. V. V. Ivanikov, “Archean Syenites and Monzonites of Karelia,” Vestn. St. Peterb. Univ., Ser. 7: Geol. Geogr. 1(7), 11–21 (1997).

    Google Scholar 

  32. K. P. Jochum, A. W. Hofmann, E. Ito, et al., “K, U and Th in Mid-Ocean Ridge Basalt Glasses and Heat Production, K/U, and K/Rb in Mantle,” Nature 306, 431–436 (1983).

    Article  Google Scholar 

  33. M. C. Johonson and M. J. Rutherford, “Experimental Calibration of the Aluminium in Hornblende Geobarometer with Application to Long Valley Caldera (California) Volcanic Rock,” Geology 17, 837–841 (1989).

    Article  Google Scholar 

  34. L. N. Kogarko, “Alkaline Magmatism and Enriched Mantle Reservoirs: Mechanisms, Time, and Depth of Formation,” Geokhimiya, No. 1, 5–13 (2006) [Geochem. Int. 44, 3–10 (2006)].

  35. L. N. Kogarko, “Genesis of Giant Rare-Metal Deposits of the Kola Peninsula,” in Russian Arctic: Geological Evolution, History, Mineralogy, and Geoecology, Ed. by D. A. Dodin and V. S. Surkov (Okeangeologiya, St. Petersburg, 2002), pp. 773–788 [in Russian].

    Google Scholar 

  36. L. N. Kogarko, C. M. B. Henderson, and H. Pacheco, “Primary Ca-Rich Carbonatite Magma and Carbonate-Silicate-Sulfide Liquid Immiscibility in the Upper Mantle,” Contrib. Mineral. Petrol. 121, 267–274 (1995).

    Article  Google Scholar 

  37. A. Kovalenko, J. D. Clemens, and V. Savatenkov, “Petrogenetic Constraints for the Genesis of Archaean Sanukitoid Suites; Geochemistry and Isotopic Evidence from Karelia, Baltic Shield,” Lithos 79, 147–160 (2005).

    Article  Google Scholar 

  38. A. Laurora, M. Mazzocchelli, G. Rivalenti, et al., “Metasomatism and Melting in Carbonated Peridotite Xenoliths from the Mantle Wedge: the Gobernador Gregores Case (Southern Patagonia),” J. Petrol. 42, 69–87 (2001).

    Article  Google Scholar 

  39. A. P. Le Roex and R. Lanyon, “Isotope and Trace Element Geochemistry of Cretaceous Damaraland Lamprophyres and Carbonatites, Northwestern Namibia: Evidence for Plume-Lithosphere Interaction,” J. Petrol. 39, 1117–1146 (1998).

    Article  Google Scholar 

  40. B. E. Leake, “Nomenclature of Amphiboles: Report of the Subkomittee on Amphiboles of the International Mineralogical Association. Commission on New Minerals and Mineral Names,” Can. Mineral. 35(1), 219–246 (1997).

    Google Scholar 

  41. C. T. Lee, R. L. Rudnick, W. F. McDonough, and I. Horn, “Petrologic and Geochemical Investigation of Carbonates in Peridotite Xenoliths from Northeastern Tanzania,” Contrib. Mineral. Petrol. 139, 470–484 (2000).

    Article  Google Scholar 

  42. N. Lefebvre, M. Kopylova, and K. Kivi, “Archean Calc-Alkaline Lamprophyres of Wawa, Ontario, Canada: Unconventional Diamondiferous Volcanoclastic Rocks,” Precambrian Res. 138, 57–87 (2005).

    Article  Google Scholar 

  43. F. P. Lesnov, “Relations in the REE Distribution in Clinopyroxenes,” Zap. Vses. Mineral. O-va, No. 4, 78–97 (2001).

  44. O. A. Levchenkov, L. K. Levsky, O. Nordgulen, et al., “U-Pb Zircon Ages from Sorvaranger, Norway, and the Western Part of the Kola Peninsula, Russia,” in Proceedings of 1st International Barents Symposium on Geology of the Eastern Finmark-Western Kola Peninsula Region, Kirkenes, Norway. 1995, Ed. by R. Roberts and O. Nordgulen (Norges Geologiske Undersøkelse, Trondheim, 1995), pp. 29–47.

    Google Scholar 

  45. A. Lindh, A. Kjöllerström, and Z. Solyon, “Strong, Localized Country-Rock Contamination and Partial Homogenization of a Mafic Magma: An Example from West Central Sweden,” Lithos 86, 212–228 (2006).

    Article  Google Scholar 

  46. S. B. Lobach-Zhuchenko, A. V. Kovalenko, V. P. Chekulaev, et al., “Archean Sanukitoids of the Baltic Shield—Melting Products of Enriched Mantle,” in Proceedings of Conference on Petrography of 21th Century. Petrology and Ore Potential of CIS and Baltic Shield (Apatity, 2005a), Vol. 3, pp. 168–170 [in Russian].

    Google Scholar 

  47. S. B. Lobach-Zhuchenko, H. R. Rollinson, V. P. Chekulaev, et al., “The Archaean Sanukitoid Series of the Baltic Shield: Geological Setting, Geochemical Characteristics and Implications for Their Origin,” Lithos 79, 107–128 (2005).

    Article  Google Scholar 

  48. S. Lobach-Zhuchenko, H. Rollinson, H. Martin, et al., “Highly Potassic Sanukitoid Panozero Pluton (Baltic Shield): Implication to Archaean Mantle Metasomatism,” Bull. Geolog. Soc. Finland, Spec. Is. 1, 95 (2006).

  49. S. B. Lobach-Zhuchenko, K. I. Lokhov, and E. M. Prasolov, “Carbon and Oxygen Isotope Composition of Carbonates of the Panozero Massif (Central Karelia),” in Proceedings of Isotope Conference, Moscow, Russia, 2004 (Moscow, 2004), pp. 149–150 [in Russian].

  50. S. B. Lobach-Zhuchenko, V. P. Chekulaev, I. N. Krylov, et al., “Archean Automagmatic Breccia of the Panozero Pluton, Central Karelia, Baltic Shield,” Dokl. Akad. Nauk 401, 1–5 (2005b) [Dokl. Earth. Sci. 401, 203–207 (2005b)].

    Google Scholar 

  51. S. B. Lobach-Zhuchenko, V. P. Chekulaev, N. A. Arestova, et al., “Archean Terranes in Karelia: Geological and Isotopic-Geochemical Evidence,” Geotektonika, No. 6, 26–42 (2000) [Geotectonics 34, 452–466 (2000)].

  52. S. B. Lobach-Zhuchenko, V. P. Chekulaev, V. V. Ivanikov, et al., “Late Archaean High-Mg and Subalkaline Granitoids and Lamprophyres As Indicators of Gold Mineralization in Karelia (Baltic Shield), Russia,” in Ore-Bearing Granites of Russia and Adjacent Countries, Ed. by A. A. Kremenetsky, B. Lehmann, and R. Seltmann (Moscow, 2000), pp. 193–211.

  53. R. W. Luth, “Mantle Volatiles-Distribution and Consequences,” in Treatise on Geochemistry, Ed. by H. D. Holland and K.K. Turekian (Elsevier, Amsterdam, 2003), pp. 319–361.

    Google Scholar 

  54. H. Martin, Geochemical Tools for Modeling Petrogenetic Mechanisms (Warsaw, 2002).

  55. M. A. Menzies and C. J. Hawkesworth, Mantle Metasomatism (Academic, London, 1987).

    Google Scholar 

  56. M. A. Menzies, A. N. Halliday, R. H. Hunter, et al., “The Age, Composition and Significance of a Xenolith-bearing Monchiquite Dike, Lewis, Scotland,” in Kimberlites and Related Rocks, Ed. by J. Ross, Geol. Soc. Austral. Spec. Publ. 14, 843–852 (1989).

  57. E. A. K. Middlemost, “Naming Materials in the Magma/Igneous Rocks System,” Earth Sci. Rev. 37, 215–224 (1994).

    Article  Google Scholar 

  58. A. Miyashiro, “Nature of Alkalic Volcanic Rock Series,” Contrib. Mineral. Petrol. 66, 91–104 (1978).

    Article  Google Scholar 

  59. N. Morimoto, “Nomenclature of Pyroxenes,” Mineral. Petrol. 39, 55–76 (1988).

    Article  Google Scholar 

  60. D. R. Nelson, A. R. Chivas, B. W. Chappell, and M. T. McCulloch, “Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources,” Geochim. Cosmochim. Acta 52, 1–17 (1988).

    Article  Google Scholar 

  61. O. Nordgulen, V. R. Vetrin, L. F. Dobrzhinetskaya, et al., “Aspects of Late Archaean Magmatism in the Sorvaranger-Kola Terrane, Northern Baltic Shield,” in Proceedings of 1st International Barents Symposium on Geology of the Eastern Finmark-Western Kola Peninsula Region, Kirkenes, Norway. 1995, Ed. by R. Roberts and O. Nordlugen (Norges Geologiske Undersøkelse, Trondheim, 1995), pp. 49–63.

    Google Scholar 

  62. J. A. Pearce, “Trace Element Characteristics of Lavas from Destructive Plate Boundaries,” in Andesites, Ed. by R. S. Thorpe (Wiley, New-York, 1982), pp. 525–548.

    Google Scholar 

  63. D. G. Pearson, D. Canil, and S. B. Shirey, “Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds,” in Treaties on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Amsterdam, 2003), pp. 171–275.

    Google Scholar 

  64. A. Peccerillo and S. R. Tailor, “Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastomonon Area, Northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article  Google Scholar 

  65. M. N. Petrovskii, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (GI KNTs RAN, Apatity, 2002).

    Google Scholar 

  66. M. Raider, “Nomenclature of Micas: Final Report of Subcommission on Micas, Commission on New Minerals and Mineral Names of the International Mineralogical Association,” Zap. Vses. Mineral. O-va, No. 5, 55–65 (1998).

  67. H. Rollison, “Magma Mingling in the Panozero Sanukitoid Intrusion, Baltic Shield,” in Proceedings of European Geophysical Society, Nice, France, 2003 (Nice, 2003), Vol. 5, p. 493.

    Google Scholar 

  68. R. L. Rudnick, W. F. McDonough, and B. W. Chappel, “Carbonatite Metasomatism in the Northern Tanzanian Mantle: Petrographic and Geochemical Characteristics,” Earth Planet. Sci. Lett. 114, 463–475 (1993).

    Article  Google Scholar 

  69. I. D. Ryabchikov, L. N. Kogarko, and T. Ntaflos, “Juvenile Flow of Carbon Dioxide and Causes of Global Environmental Changes at the Permian-Triassic Boundary,” Dokl. Akad. Nauk 399(6), 815–817 (2004) [Dokl. Earth Sci. 399A, 1320–1321 (2004)].

    Google Scholar 

  70. A. V. Samsonov, E. V. Bibikova, Yu. O. Larionova, et al., “Magnesian Granitoids (Sanukitoids) of the Kostomuksha Area, Western Karelia: Petrology, Geochronology, and Tectonic Environment of Formation,” Petrologiya 12(5), 495–529 (2004) [Petrology 12, 437–468 (2004)].

    Google Scholar 

  71. A. V. Samsonov, R. G. Berzin, N. G. Zamozhnyaya, et al., “Formation of the Early Precambrian Crust of Northwestern Karelia, Baltic Shield: Results of Geological, Petrological, and Deep-Seated Seismic (profile 4B) Studies,” in Deep-Seated Structure of the Earth Crust along Profile 4B (Kem-Kalevala), Ed. by R. G. Berzin (Petrozavodsk, 2001), pp. 109–143 [in Russian].

  72. K. Sato, T. Katsura, and E. Ito, “Phase Relations of Natural Phlogopite with and without Enstatite up to 8 Gpa: Implication for Mantle Metasomatism,” Earth Planet. Sci. Lett. 146, 511–526 (1997).

    Article  Google Scholar 

  73. M. Scambelluri and P. Philpott, “Deep Fluids in Subduction Zones,” Lithos 55, 213–227 (2001).

    Article  Google Scholar 

  74. M. W. Schmidt, “Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al in Hornblende Barometer,” Contrib. Mineral. Petrol. 110(2/3), 304–310 (1992).

    Article  Google Scholar 

  75. G. Shimoda, Y. Tatsumi, S. Nohda, et al., “Setouchi High-Mg Andesites Revisited: Geochemical Evidence for Melting of Subducting Sediments,” Earth Planet. Sci. Lett. 160, 479–492 (1998).

    Article  Google Scholar 

  76. S. B. Shirey and G. N. Hanson, “Mantle-Derived Archaean Monzodiorites and Trachyandesites,” Nature 310, 222–224 (1984).

    Article  Google Scholar 

  77. A. I. Slabunov, S. B. Lobach-Zhuchenko, E. V. Bibikova, et al., “The Archean of the Baltic Shield: Geology, Geochronology, and Geodynamic Settings,” Geotektonika, No. 6, 3–32 (2006) [Geotectonics 40, 409–433 (2006)].

  78. R. H. Smithies and D. G. Champion, “Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth,” J. Petrol. 41(12), 1653–1671 (2000).

    Article  Google Scholar 

  79. F. J. Spera, “Dynamics of Translithospheric Migration of Metasomatic Fluid and Alkaline Magma,” in Mantle Metasomatism, Ed. by M. A. Menzies and C. J. Hawkesworth (Academic, London, 1987), pp. 1–20.

    Google Scholar 

  80. R. K. Srivastava, L. M. Heaman, A. K. Sinha, and S. Shihua, “Emplacement Age and Isotope Geochemistry of Sung Valley Alkaline-Carbonatite Complex, Shillong Plateau, Northeastern India: Implications for Primary Carbonate Melt and Genesis of the Associated Silicate Rocks,” Lithos 81, 33–54 (2005).

    Article  Google Scholar 

  81. R. A. Stern and G. N. Hanson, “Archaean High-Mg Granodiorite: A Derivation of Light Rare Earth Element-Enriched Monzodiorite of Mantle Origin,” J. Petrol. 32, 201–238 (1991).

    Google Scholar 

  82. R. A. Stern, G. N. Hanson, and S. B. Shirey, “Petrogenesis of Mantle-Derived, LILE-Enriched Archean Monzodiorites and Trachyandesites (Sanukitoids) in Southwestern Superior Province,” Can. J. Earth Sci. 26, 1688–1712 (1989).

    Google Scholar 

  83. R. Stevenson, P. Herry, and C. Gariepy, “Assimilation-Fractional Crystallization Origin of Archean Sanukitoid Suites: Western Superior Province, Canada,” Precambrian Res. 96, 83–89 (1999).

    Article  Google Scholar 

  84. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M.J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  85. R. H. Sutcliffe, A. R. Smith, W. Doherty, and R. L. Barnett, “Mantle Derivation of Archean Amphibole-Bearing Granitoid and Associated Mafic Rocks: Evidence from the Southern Superior Province, Canada,” Contrib. Mineral. Petrol 105, 255–274 (1990).

    Article  Google Scholar 

  86. Y. Tatsumi, D. L. Hamilton, and R. W. Nesbitt, “Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magma: Evidence from High-Pressure Experiments and Natural Rocks,” J. Volcanol. Geotherm. Res. 29, 293–309 (1996).

    Article  Google Scholar 

  87. A. A. Tsvetkov, O. N. Volynets, and J. C. Bailey, “Shoshonites of the Kurile-Kamchatka Island Arc,” Petrologiya 1, 123–151 (1993).

    Google Scholar 

  88. S. Turner, N. Arnand, J. Lin, et al., “Post-Collision Shoshonitic Volcanism of the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts,” J. Petrol. 37, 45–71 (1996).

    Article  Google Scholar 

  89. J. A. Van Orman, T. L. Grove, and N. Shimisu, “Rare Element Diffusion in Diopside: Influence of Tempera ture, Pressure and Ionic Radius, and An Elastic Model for Diffusion in Silicates,” Contrib. Mineral. Petrol. 141, 687–703 (2001).

    Article  Google Scholar 

  90. G. Ventura, P. Del Gaudio, and G. Iezzi, “Enclaves Provide New Insights on the Dynamics of Magma Mingling: A Case Study from Salina Island (Southern Tyrrhenian Sea, Italy),” Earth Planet. Sci. Lett. 243(1/2), 128–140 (2006).

    Article  Google Scholar 

  91. V. R. Vetrin, O. Nordgulen, J. Cobbing, et al., “The Pyroxene-Bearing Tonalite-Granodiorite-Monzonite Series on the Northern Baltic Shield: Correlation and Petrology,” in Proceedings of 1st International Barents Symposium on Geology of the Eastern Finmark-Western Kola Peninsula Region, Kirkenes, Norway. 1995, Ed. by R. Roberts and O. Nordlugen (Norges Geologiske Undersøkelse, Trondheim, 1995), pp. 65–74.

    Google Scholar 

  92. P. A. Winterburn, B. Harte, and J. J. Gurney, “Peridotite Xenoliths from the Jagersfontein Kimberlite Pipe: I. Primary and Primary-Metasomatic Mineralogy,” Geochim. Cosmochim. Acta 54, 329–341 (1990).

    Article  Google Scholar 

  93. G. Witt-Eickschen, H. A. Seck, K. Mezger, et al., “Lithospheric Mantle Evolution beneath Eifel (Germany): Constraints from Sr-Nd-Pb Isotopes and Trace Element Abundances in Spinel Peridotites and Pyroxenite Xenoliths,” J. Petrol. 44(6), 1077–1095 (2003).

    Article  Google Scholar 

  94. P. J. Wyllie, “Experimental Petrology of Upper Mantle Materials, Processes and Products,” in Proceedings of International Symposium on the Physics and Chemistry of the Upper Mantle, San Paulo, Brazil, 1994 (San Paulo, 1994), pp. 167–226 (1994).

  95. P. J. Wyllie, W. L. Huang, J. Otto, and A. P. Byrnes, “Carbonation of Peridotites and Decarbonation of Siliceous Dolomites Represented in the System CaO−MgO−SiO2−CO2 to 30 Kbar,” J. South Am. Earth Sci. 100, 359–388 (1983).

    Google Scholar 

  96. X. Xu, S. Y. O’ Reilly, W. L. Griffin, and X. Zhou, “Enrichment of Upper Mantle Peridotite: Petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China,” Chem. Geol. 198, 163–188 (2003).

    Article  Google Scholar 

  97. H. S., Yoder, Jr., “Phlogopite-H2O−CO2: An Example of the Multicomponent Gas Problem,” Yearbook Carnegie Inst. Washington 68, 236–240 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Lobach-Zhuchenko.

Additional information

Original Russian Text © S.B. Lobach-Zhuchenko, H. Rollinson, V.P. Chekulaev, N.S. Guseva, N.A. Arestova, A.V. Kovalenko, 2007, published in Petrologiya, 2007, Vol. 15, No. 5, pp. 493–523.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobach-Zhuchenko, S.B., Rollinson, H., Chekulaev, V.P. et al. Geology and petrology of the archean high-K and high-Mg Panozero massif, Central Karelia. Petrology 15, 459–487 (2007). https://doi.org/10.1134/S0869591107050037

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107050037

Keywords

Navigation