Skip to main content
Log in

Foreign meteoritic material of howardites and polymict eucrites

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Howardites and polymict eucrites are fragments of regolith breccias ejected from the surface of a differentiated (eucritic) parent body, perhaps, of the asteroid Vesta. The first data are presented demonstrating that howardites contain, along with foreign fragments of carbonaceous chondrites, also fragments of ordinary chondrites, enstatite meteorites, ureilites, and mesosiderites. The proportions of these types of foreign meteoritic fragments in howardites and polymict eucrites are the same as in the population of cosmic dust particles obtained from Antarctic and Greenland ice. The concentrations of siderophile elements in howardites and polymict eucrites are not correlated with the contents of foreign meteoritic particles. It is reasonable to believe that cosmogenic siderophile elements are concentrated in howardites and polymict eucrites mostly in submicrometer-sized particles that cannot be examined mineralogically. The analysis of the crater population of the asteroid Vesta indicates that the flux of chondritic material to the surface of this asteroid should have been three orders of magnitude higher than the modern meteoritic flux and have been comparable with the flux to the moon’s surface during its intense meteoritic bombardment. This provides support for the earlier idea about a higher meteoritic activity in the solar system as a whole at approximately 4 Ga. The lithification of the regolith (into regolith breccia) of the asteroid Vesta occurred then under the effect of thermal metamorphism in the blanket of crater ejecta. Thus, meteorite fragments included in howardites provide record of the qualitative composition of the ancient meteorite flux, which was analogous to that of the modern flux at the Earth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Afiattalab and J. T. Wasson, “Composition of the Metal Phases in Ordinary Chondrites: Implications Regarding Classification and Metamorphism,” Geochim. Cosmochim. Acta 44, 431–446 (1980).

    Article  Google Scholar 

  2. A. T. Bazilevskii, B. A. Ivanov, K. P. Florenskii, et al., Impact Craters on the Moon and Planets (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  3. D. D. Bogard, “Impact Ages of Meteorites: a Synthesis,” Meteoritics 30, 244–268 (1995).

    Google Scholar 

  4. T. E. Bunch, “Petrography and Petrology of Basaltic Achondrite Polymict Breccias (Howardites),” in Proceedings of 6th Lunar Planet. Sci. Conference, Houston, USA, 1975 (Houston, 1975), pp. 469–492.

  5. T. E. Bunch, S. Chang, U. Frick, et al., “Carbonaceous Chondrites—I. Characterization and Significance of Carbonaceous Chondrite (CM) Xenoliths in the Jodzie Howardite,” Geochim. Cosmochim. Acta 43, 1727–1740 (1979).

    Article  Google Scholar 

  6. C. L. Chou, W. V. Boynton, R. W. Bild, et al., “Trace Element Evidence Regarding a Chondritic Component in Howardite Meteorites,” in Proceedings of 7th Lunar Planet. Sci. Conference, Houston, USA, 1976 (Houston, 1976), pp. 3501–3518.

  7. N. Divine, “Five Populations of Interplanetary Meteoroids,” Bull. Am. Astronom. Society 24, 952 (1992).

    Google Scholar 

  8. R. T. Dodd, Meteorites: A Petrologic-Chemical Synthesis (Cambridge, London, 1981; Mir, Moscow, 1986).

    Google Scholar 

  9. M. Fuhrman and J. Papike, “Howardites and Polymict Eucrites: Regolith Samples from the Eucrite Parent Body—Petrology of Bholgati, Bununu, Kapoeta, and ALHA 76005,” in Proceedings of 12th Lunar Planet. Sci. Conference, Houston, USA, 1982 (Houston, 1982), Vol. 2, pp. 1257–1279.

    Google Scholar 

  10. T. Fukuoka, W. V. Boynton, M.-S. Ma, and R. A. Schmitt, “Genesis of Howardites, Diogenites, and Eucrites,” in Proceedings of 8th Lunar Planet. Sci. Conference, Houston, USA, 1977 (Houston, 1977), Vol. 1, pp. 187–210.

  11. M. J. Gaffey, “Surface Lithologic Heterogeneity of Asteroid 4 Vesta,” Icarus 127, 130–157 (1997).

    Article  Google Scholar 

  12. S. E. Haggerty, “An Enstatite Chondrite from Hadley Rille,” in The Apollo 15 Lunar Samples (Lunar Sci. Inst., Houston, 1972), pp. 85–87.

    Google Scholar 

  13. R. H. Hewins, “The Composition and Origin of Metal in Howardites,” in Proceedings of 10th Lunar Planet. Sci. Conference, Houston, USA, 1979 (Houston, 1979), pp. 543–545.

  14. K. R. Housen, R. M. Schmidt, and K. A. Holsapple, “Crater Ejecta Scaling Laws: Fundamental Forms Based on Dimensional Analysis,” J. Geophys. Res. 88, 2485–2499 (1983).

    Article  Google Scholar 

  15. Y. Ikeda and H. Takeda, “Petrology of the Y-7308 Howardite,” in Proceedings of 15th Lunar Planet. Sci. Conference, Houston, USA, 1984 (Houston, 1984), pp. 391–392.

  16. K. Kitts and K. Lodders, “Survey and Evaluation of Eucrite Bulk Compositions,” Meteorit. Planet. Sci 33, 197–213 (1988).

    Google Scholar 

  17. L. C. Klein and R. H. Hewins, “Provenance of Metal and Melt Rock Textures in the Bununu Howardite,” in Proceedings of 10th Lunar Planet. Sci. Conference, Houston, USA, 1979 (Houston, 1979), pp. 667–669.

  18. D. Kleinschrot and M. Okrusch, “Mineralogy, Petrography, and Thermometry of the H5 Chondrite Carcote, Chile,” Meteorit. Planet. Sci 34, 795–802 (1999).

    Google Scholar 

  19. G. M. Kolesov and D. Y. Sapozhnikov, “Neutron Activation Determination of Noble Metals in Samples of Terrestrial and Cosmic Origin Using Microfire Assay Concentration,” Analyst 120, 1461–1464 (1995).

    Article  Google Scholar 

  20. G. Kurat, C. Koeberl, T. Presper, and F. Brandstaetter, “Petrology and Geochemistry of Antarctic Micrometeorites,” Geochim. Cosmochim. Acta 58, 3879–3904 (1994).

    Article  Google Scholar 

  21. T. C. Labotka and J. J. Papike, “Howardites—Samples of the Regolith of the Eucrite Parent Body: Petrology of Frankfort, Pavlovka, Yurtuk, Malvern, and ALHA 77302,” in Proceedings of 11th Lunar Planet. Sci. Conference, Houston, USA, 1980 (Houston, 1980), pp. 1103–1130.

  22. H. P. Larson and U. Fink, “Infrared Spectral Observations of Asteroid 4 Vesta,” Icarus 26, 420–427 (1975).

    Article  Google Scholar 

  23. J. C. Laul and D. C. Gosselin, “The Bholghati Howardite—Chemical Study,” Geochim. Cosmochim. Acta 54, 2167–2175 (1990).

    Article  Google Scholar 

  24. J. Laul, R. Keays, R. Ganapathy, et al., “Chemical Fractionation in Meteorites—V. Volatile and Siderophile Elements in Achondrites and Ocean Ridge Basalts,” Geochim. Cosmochim. Acta 36, 329–345 (1972).

    Article  Google Scholar 

  25. Y. Lin and M. Kimura, “Petrographic and Mineralogical Study of New EH Melt Rocks and a New Enstatite Chondrite Grouplet,” Meteorit. Planet. Sci. 33, 501–511 (1998).

    Google Scholar 

  26. M. M. Lindstrom and D. W. Mittlefehldt, “A Geochemical Study of Russian Eucrites and Howardites,” Meteoritics 27, 250 (1992).

    Google Scholar 

  27. C. Lorenz, G. Kurat, F. Brandstaetter, and M. Nazarov, “NWA 1235: A Phlogopite-Bearing Enstatite Meteorite,” in Proceedings of 34th Lunar Planet. Sci. Conference, Houston, USA, 2003 (Houston, 2003), No. 1211.

  28. C. Lorenz, G. Kurat, and F. Brandstaetter, “NWA 776: A Howardite with an Anomalously High Abundance of Carbonaceous Chondrite Xenoliths,” Proceedings of 33rd Lunar Planet. Sci. Conference, Houston, USA, 2002 (Houston, 2002), No. 1570.

  29. C. Lorenz, M. Nazarov, G. Kurat, et al., “Clast Population and Chemical Bulk Composition of the Dhofar 018 Howardite,” in Proceedings of 32nd Lunar Planet. Sci. Conference, Houston, USA, 2001 (Houston, 2001), No. 1778.

  30. B. Mason, “The Definition of a Howardite,” Meteoritics 18, 245–248 (1983).

    Google Scholar 

  31. E. Mazor and E. Anders, “Primordial Gases in the Jodzie Howardite and the Origin of the Gas-Rich Meteorites,” Geochim. Cosmochim. Acta 31, 1441–1456 (1967).

    Article  Google Scholar 

  32. T. B. McCord, J. B. Adams, and T. V. Johnson, “Asteroid Vesta: Spectral Reflectivity and Compositional Implications,” Science 168, 1445–1447 (1970).

    Article  Google Scholar 

  33. H. J. Melosh, Impact Cratering: A Geologic Process (Mir, Moscow, 1994; Clarendon Press, New York, 1989).

    Google Scholar 

  34. D. W. Mittlefehldt and M. Lindstrom, “Geochemistry and Petrology of a Suite of Ten Yamato HED Meteorites,” in Proceedings of 6th NIPR Symposium, No 6, Tokyo, Japan, 1993 (Tokyo, 1993), p. 268.

  35. D. W. Mittlefehldt, “Petrographic and Chemical Characterization of Igneous Lithic Clasts from Mesosiderites and Howardites and Comparison with Eucrites and Diogenites,” Geochim. Cosmochim. Acta 43, 1917–1935 (1979).

    Article  Google Scholar 

  36. D. W. Mittlefehldt, “Petrology and Geochemistry of the Elephant Moraine A79002 Diogenite,” Meteorit. Planet. Sci. 35, 901–912 (2000).

    Google Scholar 

  37. D. W. Mittlefehldt, “The Genesis of Diogenites and HED Parent Body Petrogenesis,” Geochim. Cosmochim. Acta 58, 1537–1552 (1994).

    Article  Google Scholar 

  38. W. Morgan, R. Ganapathy, H. Higuchi, E. Anders, “Meteoritic Material on the Moon,” in Proceedings of the Soviet-American Conference on Cosmochemistry of the Moon and Planets, Moscow, 1974 (US. Govern. Prin. Off., Washington, 1977; Moscow, Nauka, 1975), Pt. 2, pp. 678–679.

    Google Scholar 

  39. O. Müller and J. Zähringer, “Chemische Unterschiede bei Uredelgashaltigen Steinmeteoriten,” Earth Planet. Sci. Lett., No. 1, 25–29 (1966).

  40. M. A. Nazarov, F. Brandshtetter, and G. Kurat, “Phosphorian Sulfides and Phosphides in CM Chondrites,” Geokhimiya, No. 5, 475–484 (1998) [Geochem. Int. 36, 415–424 (1998)].

  41. M. A. Nazarov, F. Brandstaetter, G. Kurat, et al., “Chemistry of Carbonaceous Xenoliths from the Erevan Howardite,” in Proceedings of the 25th Lunar Planet. Sci. Conference, Houston, USA, 1994 (Houston, 1994), pp. 981–982.

  42. M. Nazarov, F. Brandstaetter, and G. Kurat, “A New Type of Carbonaceous Chondrite Matter from the Erevan Howardite,” in Proceedings of 26th Lunar Planet. Sci. Conference, Houston, USA, 1995 (Houston, 1995), pp. 1031–1032.

  43. J. Olsen, K. Fredriksson, S. Rajan, and A. Noonan, “Chondrule-like Objects and Brown Glasses in Howardites,” Meteoritics 25, 187–194 (1990).

    Google Scholar 

  44. H. Palme, B. Spettel, A. Burghele, et al., “Elephant Moraine Polymict Eucrites: An Eucrite-Howardite Compositional Link,” in Proceedings of 14th Lunar Planet. Sci. Conference, Houston, USA, 1983 (Houston, 1983), pp. 590–591.

  45. H. Palme, F. Wlotzka, B. Spettel, et al., “Camel Donga: An Eucrite with High Metal Content,” Meteoritics 23, 49–57 (1988).

    Google Scholar 

  46. H. Palme, H. Baddenhausen, K. Blum, et al., “New Data on Lunar Samples and Achondrites and a Comparison of the Least Fractionated Samples from the Earth, the Moon and the Eucrite Parent Body,” in Proceedings of 9th Lunar Planet. Sci. Conference, Houston, USA, 1978 (Houston, 1978), Vol. 1, pp. 25–27.

    Google Scholar 

  47. S. J. Parry, M. Asif, and I. W. Sinclair, “Radiochemical Fire-Assay for Determination of the Platinum Group Elements,” J. Radioanal. Nucl. Chem. 123(2), 593–606 (1988).

    Article  Google Scholar 

  48. R. L. Paul and M. E. Lipschuts, “Chemical Studies of Differentiated Meteorites: 1. Labile Trace Elements in Antarctic and Non-Antarctic Eucrites,” Geochim. Cosmochim. Acta 54, 3185–3196 (1990).

    Article  Google Scholar 

  49. E. Pierazzo and H. J. Melosh, “Hydrocode Modelling of Oblique Impacts: The Fate of Projectile,” Meteorit. Planet. Sci. 35, 117–130 (2000).

    Article  Google Scholar 

  50. A. Pun, K. Keil, G. Taylor, and R. Wieler, “The Kapoeta Howardite: Implications for the Regolith Evolution of the HED Parent Body,” Meteorit. Planet. Sci. 33, 835–851 (1998).

    Google Scholar 

  51. J. B. Renard, A. C. Levasseur-Regourd, and R. Dumont, “Properties of Interplanetary Dust from Infrared and Optical Observations. II. Brightness, Polarization, Temperature, Albedo and Their Dependence on the Elevation Above the Ecliptic,” Astron. Astrophys. 304, 602 (1995).

    Google Scholar 

  52. A. E. Rubin, “Mineralogy of Meteorite Groups,” Meteoritics 32, 231–247 (1997).

    Google Scholar 

  53. R. T. Schmitt, “Shock Experiments with the H6 Chondrite Kernouvé: Pressure Calibration of Microscopic Shock Effects,” Meteorit. Planet. Sci. 35, 545–560 (2000).

    Google Scholar 

  54. A. S. Semenova, N. N. Kononkova, and E. V. Guseva, “Olivine-Hypersthene Chondrite in the Luna 16 Soil,” in Proceedings of 21st Lunar Planet. Sci. Conference, Houston, USA, 1990 (Houston, 1990), Vol. 21, pp. 1126–1127.

    Google Scholar 

  55. L. C. Sideras, K. J. Domanik, and D. S. Lauretta, “Early and Late Stage Metals and Sulfides in Diogenites,” in Proceedings of 35th Lunar Planet. Sci. Conference, Houston, USA, 2004 (Houston, 2004), No. 1752.

  56. M. R. Smith, “A Chemical and Petrologic Study of Igneous Lithic Clasts from the Kapoeta Howardite,” Ph.D. dissertation (1982).

  57. M. Solc, R. Stork, and M. Kozel, “Impacts of Asteroidal Material on Cometary Nuclei,” Meteoritics 29, 535–536 (1994).

    Google Scholar 

  58. M. V. Sykes, “IRAS Observations of Extended Zodiacal Structures,” Astrophys. J. 334, Part 2, L55–L58 (1988).

    Article  Google Scholar 

  59. P. C. Thomas, R. P. Binzel, B. H. Zellner, et al., “Vesta: Spin Pole, Size and Shape from HST Images,” Icarus 128, 88–94 (1997).

    Article  Google Scholar 

  60. H. Waenke, H. Baddenhausen, A. Balacescu, et al., “Multielement Analyses of Lunar Samples and Some Implications of the Results,” in Proceedings of 3rd Lunar Planet. Sci. Conference, Houston, USA, 1972 (Houston, 1972), Vol. 2, p. 1251.

    Google Scholar 

  61. H. Waenke, H. Baddenhausen, K. Blum, et al., “On the Chemistry of Lunar Samples and Achondrites—Primary Matter in the Lunar Highlands: a Re-Evaluation,” in Proceedings of 8th Lunar Planet. Sci. Conference, Houston, USA, 1977 (Houston, 1977), Vol. 2, p. 2191.

    Google Scholar 

  62. J. Walter, G. Kurat, F. Brandstaetter, et al., “The Abundance of Ordinary Chondrite Debris among Antarctic Micrometeorites,” Meteoritics 30, 592 (1995).

    Google Scholar 

  63. M. S. Wang, R. L. Paul, and M. E. Lipschutz, “Volatile/Mobile Trace Elements in Bholghati Howardite,” Geochim. Cosmochim. Acta 54, 2177–2181 (1990).

    Article  Google Scholar 

  64. J. T. Wasson and D. W. Kallemeyn, “Compositions of Chondrites,” Philos. Trans. R. Soc. London, Ser. A 328, 335–544 (1988).

    Google Scholar 

  65. J. T. Wasson, Meteorites: Classification and Properties (Springer, New York, 1974).

    Google Scholar 

  66. J. T. Wasson, W. V. Boynton, and C.-L. Chou, “Compositional Evidence Regarding the Influx of Interplanetary Materials Onto the Lunar Surface,” The Moon 13, 121–141 (1975).

    Article  Google Scholar 

  67. M. K. Weisberg, M. Prinz, R. N. Clayton, and T. K. Mayeda, “The CR (Renazzo-Type) Carbonaceous Chondrite Group and Its Implications,” Geochim. Cosmochim. Acta 57, 1567–1586 (1993).

    Article  Google Scholar 

  68. L. L. Wilkening, “Foreign Inclusions in Stony Meteorites—I. Carbonaceous Chondritic Xenoliths in the Kapoeta Howardite,” Geochim. Cosmochim. Acta 37, 1985–1989 (1973).

    Article  Google Scholar 

  69. L. L. Wilkening, “Tyshes Island: An Unusual Clast Composed of Solidified, Immiscible, Fe-FeS and Silicate Melts,” Meteoritics 13, 1–9 (1978).

    Google Scholar 

  70. R. Wolf, M. Ebihara, G. Richter, and E. Anders, “Aubrites and Diogenites: Trace Elements Clues to Their Origin,” Geochim. Cosmochim. Acta 47, 2257–2270 (1983).

    Article  Google Scholar 

  71. M. Zolensky, M. Weisberg, P. Buchanan, and D. Mittlefehldt, “Mineralogy of Carbonaceous Chondrite Clasts in HED Achondrites and the Moon,” Meteorit. Planet. Sci. 31, 518–537 (1996).

    Google Scholar 

  72. H. A. Zook and D. S. McKay, “On the Asteroidal Component of Cosmic Dust,” in Proceedings of 17th Lunar Planet. Sci. Conference, Houston, USA, 1986 (Houston, 1986), pp. 977–978.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.A. Lorenz, M.A. Nazarov, G. Kurat, F. Brandstaetter, Th. Ntaflos, 2007, published in Petrologiya, 2007, Vol. 15, No. 2, pp. 115–132.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, K.A., Nazarov, M.A., Kurat, G. et al. Foreign meteoritic material of howardites and polymict eucrites. Petrology 15, 109–125 (2007). https://doi.org/10.1134/S0869591107020014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107020014

Keywords

Navigation