Skip to main content
Log in

Phase equilibria in rocks of the paleoproterozoic banded iron formation (BIF) of the Lebedinskoe deposit, Kursk Magnetic Anomaly, and the petrogenesis of BIF with alkali amphiboles

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

BIF with alkali amphibole at the Lebedinskoe iron deposits, the largest in Russia, were metamorphosed at 550°C and 2–3 kbar and contain ferriwinchite, riebeckite, actinolite, grunerite, and aegirine-augite. All reaction textures observed in the rocks were produced during the prograde metamorphic stage and represent the following succession of mineral replacements: GruRbk, ActWinRbk. Data obtained on the textural relations and compositional variations of Ca, Ca-Na, and Na Al-free amphiboles point to the complete miscibility in the actinolite-ferriwinchite and ferriwinchite-riebeckite isomorphic series. Riebeckite is formed in BIF during the prograde metamorphic stage, with the participation of a fluid insignificantly enriched in Na+ and at increasing oxygen fugacity. The critical factors controlling the development of alkali amphiboles and Ca-Na pyroxenes in carbonate-bearing BIF is the oxygen activity and the presence of at least low concentrations of Na+ ions in the fluid. The minerals contain Fe3+, and all reactions producing them are oxidation reactions. The origin of riebeckite late in the course of the mineral-forming process is caused by the Ca2+Mg2+ → Na+Fe3+ heterovalent isomorphic replacement in calcic and calcic-sodic amphiboles and by the oxidation of grunerite in the presence of a fluid enriched in Na ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gru :

grunerite

Rbk :

riebeckite

Act :

actinolite

Win :

winchite

Qtz :

quartz

Mag :

magnetite

Hem :

hematite

Aeg :

aegirine

Aug :

augite

Aeg-Aug :

aegirine-augite

Dol :

dolomite

Cal :

calcite

Di :

diopside

Grt :

garnet

Bt :

biotite

Ap :

apatite

References

  1. L. M. Anovitz and E. J. Essene, “Phase Equilibria in the System CaCO3-MgCO3-FeCO3,” J. Petrol. 28, Pt. 2, 389–414 (1987).

    Google Scholar 

  2. G. V. Artemenko, Doctoral Dissertation in Geology and Mineralogy (Kiev, 1998) [in Russian].

  3. M. Cameron and J. J. Papike, “Structural and Chemical Variations in Pyroxenes,” Am. Mineral. 66(1/2), 1–50 (1981).

    Google Scholar 

  4. H. P. Eugster, “Inorganic Bedded Cherts from the Magadi Area, Kenya,” Contrib. Mineral. Petrol. 22, 1–31 (1969).

    Article  Google Scholar 

  5. V. I. Fonarev, A. A. Graphchikov, and A. N. Konilov, “A Consistent System of Geothermometers for Metamorphic Complexes,” Int. Geol. Rev. 33(8), 743–783 (1991).

    Article  Google Scholar 

  6. B. M. French, “Mineral Assemblages in Diagenetic and Low-Grade Metamorphic Iron Formations,” Econ. Geol. 68, 1063–1074 (1973).

    Google Scholar 

  7. J. Ganguly and S. K. Saxena, “Mixing Properties of Aluminosilicate Garnets: Constraints from Natural and Experimental Data, and Applications to Geothermobarometry,” Am. Mineral. 69(1/2), 88–97 (1984).

    Google Scholar 

  8. S. Ghose, W. C. Forbes, and P. P. Phakey, “Unmixing of an Alkali Amphibole (Tirodite) Into Magnesio-Richerite and Magnesio-Riebeckite,” Indian J. Earth Sci., No. 1, 37–42 (1974).

  9. S. Giralt, S. Riera, J. Klerkx, et al., “Lake Issyk-Kul: An Example of Recent Evolution in a Continental Environment,” in Proceedings of 3rd Workshop Southern European Working Group of the European Lake Drilling, Girona, Spain, 2001, Terra Nostra, No. 1/2, 30–36 (2001).

  10. A. A. Glagolev, Metamorphism of the Precambrian Rocks of KMA (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  11. M. J. Gole and C. Klein, “Banded Iron Formation through Much of Precambrian Time,” J. Geol. 89, 169–183 (1981).

    Article  Google Scholar 

  12. K. V. Hodges and F. S. Spear, “Geothermometry, Geobarometry and the Al2SiO5 Triple Point at Mt. Moosilauke, New Hampshire,” Am. Mineral. 67(11/12), 1118–1134 (1982).

    Google Scholar 

  13. M. J. Holdaway and S. M. Lee, “Fe-Mg Cordierite Stability in High Grade Pelitic Rocks, Based on Experimental, Theoretical and Natural Observations,” Contrib. Mineral. Petrol. 63(2), 175–198 (1977).

    Article  Google Scholar 

  14. Iron Ores of KMA, Ed. by V. P. Orlov et al. (Geoinformark, Moscow, 2001) [in Russian].

    Google Scholar 

  15. H. L. James, “Sedimentary Facies of Iron Formation,” Econ. Geol. 49, 235–285 (1954).

    Article  Google Scholar 

  16. C. Klein, “Greenalite, Minnesotaite, Crocidolite and Carbonates in a Very Low-Grade Metamorphic Precambrian Iron Formation,” Can. Mineral. 12, 475–498 (1974).

    Google Scholar 

  17. C. Klein, “Two-Amphibole Assemblages in the System Actinolite-Hornblende-Glaucophane,” Am. Mineral. 54, 212–237 (1969).

    Google Scholar 

  18. C. Klein, “Diagenesis and Metamorphism of Precambrian Iron Formations,” in Iron Formations: Facts and Problems, Ed. by A. F. Trendall and R. C. Morris (Elsevier, Amsterdam, 1983), pp. 417–469.

    Google Scholar 

  19. I. V. Lavrent’eva and L. L. Perchuk, “Phase Relations in the Biotite-Garnet System. Experimental Data,” Dokl. Akad. Nauk SSSR 260(3), 731–734 (1981).

    Google Scholar 

  20. B. E. Leake and A. R. Woolley, and 20 Members of the Subcommittee on Amphiboles, “Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names,” Eur. J. Mineral 9, 623–651 (1997).

    Google Scholar 

  21. C. M. Lesher, “MIneralogy and Petrology of the Sokoman Iron Formation Near Ardua Lake, Quebec,” Can. J. Earth Sci. 15, 480–500 (1978).

    Google Scholar 

  22. T. Miyano and C. Klein, “Conditions of Riebeckite Formation in the Iron-Formation of the Dales Gorge Member, Hamersley Group, Western Australia,” Am. Mineral. 68, 517–529 (1983).

    Google Scholar 

  23. T. Miyano and N. J. Beukes, “Mineralogy and Petrology of the Contact Metamorphosed Amphibole Asbestos-Bearing Penge Iron Formation, Eastern Transvaal, South Africa,” J. Petrol. 38(5), 651–676 (1997).

    Article  Google Scholar 

  24. T. Miyano, “Stilpnomelane, Fe-Rich Mica, K-Feldspar and Hornblende in Banded Iron Formation Assemblages of the Dales Gorge Member, Hamersley Group, Western Australia,” Can. Mineral. 20, 189–202 (1982).

    Google Scholar 

  25. N. Morimoto, “Nomenclature of Pyroxenes. Report of the Subcommittee on Pyroxenes of the International Mineralogical Associations on New Minerals and Mineral Names,” Can. Mineral. 27, 143–156 (1989).

    Google Scholar 

  26. T. Oba and I. A. Nicholls, “Experimental Study of Cummingtonite and Ca-Na Amphibole Relations in the System Gru-Act-Pl-Qtz-H2O,” Am. Mineral. 71, 1354–1365 (1986).

    Google Scholar 

  27. B. E. Patric and B. W. Evans, “Metamorphic Evolution of the Seward Peninsula Blueschist Terrane,” J. Petrol. 30(3), 531–555 (1989).

    Google Scholar 

  28. L. L. Perchuk, “Consistency between Some Fe-Mg Geothermometer based on the Nernst Law: Revision,” Geokhimiya, No. 5, 611–622 (1989).

  29. N. A. Plaksenko, Principal Relations and Tendencies of Iron Sedimentation in the Precambrian (Voronezhsk. Univ., Voronezh, 1966) [in Russian].

    Google Scholar 

  30. D. Puhan, Petrographie und Geothermometrische Untersuchungen an Silicat Fuhrenden Dolomit-Calcit-Marmoren zur Ermittlung den Metamorphose Bedingungen im Zentral-Damara-Orogen (SW-Africa) (Univ. Gottingen, Habil, 1979).

    Google Scholar 

  31. B. Reynard and M. Ballevre, “Coexisting Amphiboles in an Eclogite from the Western Alps: New Constraints on the Miscibility Gap Between Sodic and Calcic Amphiboles,” J. Metamorph. Geol. 6, 333–350 (1988).

    Google Scholar 

  32. P. Robinson, F. S. Spear, J. C. Schumacher, et al., “Phase Relations of Metamorphic Amphiboles: Natural Occurrence and Theory,” Rev. Mineral. 9B, 1–201 (1982).

    Google Scholar 

  33. K. A. Savko and M. V. Poskryakova, “Mineralogy, Phase Equilibria, and Metamorphism of the Rocks of the Novoyaltinskoe Iron Deposit of KMA,” Vestn. Voronezhsk. Univ., Ser. Geol., No. 2, 113–130 (2003a).

  34. K. A. Savko and M. V. Poskryakova, “Mineralogy, Phase Equilibria, and Metamorphism of the Shemraevskoe Iron Deposit of the Kursk Magnetic Anomaly,” Vestn. Voronezhsk. Univ., Ser. Geol., No. 1, 68–84 (2004).

  35. K. A. Savko and M. V. Poskryakova, “Riebeckite-Aegirine-Celadonite BIF at the Mikhailovskoe Iron Deposit of the Kursk Magnetic Anomaly: Phase Equilibria and Metamorphic Conditions,” Petrologiya 11, 471–490 (2003b) [Petrology 11, 426–443 (2003)].

    Google Scholar 

  36. K. A. Savko and N. Yu. Kal’mutskaya, “Physicochemical Conditions of Metamorphism of the Magnetite-Grunerite-Riebeckite Rocks of the Prioskol’skoe Iron Deposit of the Kursk Magnetic Anomaly,” Vestn. Voronezhsk. Univ., Ser. Geol., No. 1, 95–103 (2002).

  37. I. N. Shchegolev, Precambrian Ore Deposits and Methods of their Study (Nedra, Moscow, 1985) [in Russian].

    Google Scholar 

  38. N. P. Shcherbak, G. V. Artemenko, E. N. Bartnitskii, et al., “Age of Silicic Metavolcanic Rocks of the Aleksandrovskii and Korobkovskii Areas of KMA,” Dokl. Akad. Nauk Ukr. SSR: Ser. B, No. 6, 120–123 (1992).

  39. C. K. Shearer, J. C. Schumacher, and P. Robinson, “Zoned Hastingsite-Ferri-Katophorite-Taramite Phenocrysts, an Amphibole + Orthoclase = Aegirine-Augite + Biotite Reaction, and a New Sodic Amphibole in Nepheline-Sodalite Syenite, Red Hill, New Hampshire,” Geol. Soc. Amer. Abstr. 13, 552 (1981).

    Google Scholar 

  40. E. A. Smelik and D. R. Veblen, “Exsolution of Ca-Amphibole from Glaucophane and the Miscibility Gap Between Sodic and Calcic Amphiboles,” Contrib. Mineral. Petrol. 112, 178–195 (1992).

    Article  Google Scholar 

  41. A. S. Talantsev, Geothermobarometry on Dolomite-Calcite Assemblages (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  42. A. B. Thompson, “Mineral Reactions in Pelitic Rocks: 1. Prediction of P-T-X (Fe-Mg) Relations,” Am. J. Sci. 276(4), 401–424 (1976).

    Article  Google Scholar 

  43. A. F. Trendall and J. G. Blockley, “The Iron Formation of the Precambrian Hamersley Group, Western Australia with Special Reference to the Associated Crocidolite,” Geol. Surv. W. Aust. Bull. (1970).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.A. Savko, 2006, published in Petrologiya, 2006, Vol. 14, No. 6, pp. 604–625.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savko, K.A. Phase equilibria in rocks of the paleoproterozoic banded iron formation (BIF) of the Lebedinskoe deposit, Kursk Magnetic Anomaly, and the petrogenesis of BIF with alkali amphiboles. Petrology 14, 567–587 (2006). https://doi.org/10.1134/S086959110606004X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959110606004X

Keywords

Navigation