Skip to main content
Log in

Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Three stages of Early Proterozoic granitoid magmatism were distinguished in the southwestern margin of the Siberian craton: (1) syncollisional, including the formation of migmatites and granites in the border zone of the Tarak massif; (2) postorogenic, postcollisional, comprising numerous granitoid plutons of diverse composition; and (3) intraplate, corresponding to the development of potassic granitoids in the Podporog massif. Rocks of three petrological and geochemical types (S, I, and A) were found in the granitoid massifs. The S-type granites are characterized by the presence of aluminous minerals (garnet and cordierite), and their trace element distribution patterns and Nd isotopic parameters are similar to those of the country paragneisses and migmatites. Their formation was related to melting under varying H2O activity of aluminous and garnet—biotite gneisses at P ≥ 5 kbar and T < 850°C with a variable degree of melt separation from the residual phases. The I-type tonalites and dioritoids show low relative iron content, high concentrations of CaO and Sr, fractionated REE distribution patterns with (La/Yb)n = 11–42, and variable depletion of heavy REE. Their parental melts were derived at T ≥ 850°C and P > 10 and P < 10 kbar, respectively. According to isotopic data, their formation was related to melting of a Late Archean crustal (tonalite-diorite-gneiss) source with a contribution of juvenile material ranging from 25–55% (tonalites of the Podporog massif) to 50–70% (dioritoids of the Uda pluton). The most common A-type granitoids show high relative iron content; high concentration of high-field-strength elements, Th, and light and heavy REE; and a distinct negative Eu anomaly. Their primary melts were derived at low H2O activity and T ≥ 950°C. The Nd isotopic composition of the granitoids suggests contributions to the magma formation processes from ancient (Early and Late Archean) crustal (tonalite-diorite-gneiss) sources and a juvenile mantle material. The contribution of the latter increases from 0–35% in the granites of the Podporog and Tarak massifs to 40–50% for the rocks of the Uda and Shumikha plutons. The main factors responsible for the diversity of petrological and geochemical types of granitoids in collisional environments are the existence of various fertile sources in the section of the thickened crust of the collisional orogen, variations in magma generation conditions \((\alpha _{H_2 O} , T, and P)\) during sequential stages of granite formation, and the varying fraction of juvenile mantle material in the source region of granitoid melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Anisimova, A. A. Podvezko, and S. V. Cheremisin, Geological Map of Irkutsk Oblast and Adjacent Territories. Scale 1:500000, Ed. by V. G. Kuznetsov and P.M. Khrenov (Min. Geol. SSSR, VSEGEI, Leningrad, 1982) [in Russian].

    Google Scholar 

  2. S. I. Arbuzov and S. V. Novoselov, “Native Iron in Granites of the Tarak Complex, Southern Yenisei Range,” Zap. Vseross. Mineral. O-va 124(1), 75–78 (1995).

    Google Scholar 

  3. T. B. Bayanova, Age of the Key Geologic Complexes of the Kola Region and Duration of the Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  4. J. S. Beard and G. E. Lofgren, “Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3 and 6.9 kbar,” J. Petrol. 32, 365–401 (1991).

    Google Scholar 

  5. E. V. Bibikova, T. V. Gracheva, V. A. Makarov, and A. D. Nozhkin, “Age Boundaries in the Early Precambrian Geologic Evolution of the Yenisei Range,” Stratigr. Geol. Korrelyatsiya 1(1), 35–40 (1993).

    Google Scholar 

  6. E. V. Bibikova, T. V. Gracheva, I. K. Kozakov, et al., “U-Pb Age of the Hypersthene Granites (Kuzeevites), Angara-Kan Inlier (Yenisei Range),” Geol. Geofiz. 42, 864–867 (2001a).

    Google Scholar 

  7. E. V. Bibikova, V. I. Levitskii, L. Z. Reznitskii, et al., “Archean Tonalite-Trondhjemite Association of the Sayan Region Basement Inlier of the Siberian Platform: U-Pb, Sm-Nd and Sr Isotopic Data,” in Geology, Geochemistry, and Geophysics at the Boundary of the 20th and 21th Centuries (Inst. Zemn. Kory Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2001b) [in Russian].

    Google Scholar 

  8. W. V. Boynton, “Cosmochemistry of the Rare Earth Elements: Meteorite Studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  9. V. V. Bryntsev, Precambrian Granitoids of the Northwestern Sayan Region (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  10. M. R. Carroll and P. J. Wyllie, “The System Tonalite-H2O at 15 kbar and the Genesis of Calc-Alkaline Magmas”, Am. Mineral. 75, 345–357 (1990).

    Google Scholar 

  11. B. W. Chappell and A. J. White, “Two Contrasting Granite Types,” Pacific Geol. 8, 173–174 (1974).

    Google Scholar 

  12. B. W. Chappell, A. J. White, and D. Wyborn, “The Importance of Residual Source Material (Restite) in Granite Petrogenesis,” J. Petrol. 28, 1111–1138 (1987).

    Google Scholar 

  13. D. B. Clarke, “Peraluminous Granites,” Can. Mineral. 19, 1–2 (1981).

    Google Scholar 

  14. W. J. Collins, S. D. Beams, A. J. R. White, and B. W. Chappell, “Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia,” Contrib. Mineral. Petrol. 80, 189–200 (1982).

    Google Scholar 

  15. R. A. Creaser, R. C. Price, and R. J. Wormald, “A-Type Granites Revisited: Assessment of the Residual-Source Model,” Geology 19, 163–166 (1991).

    Article  Google Scholar 

  16. V. M. Datsenko, Granitoid Magmatism of the Southwestern Framing of the Siberian Craton (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  17. T. V. Donskaya, E. B. Sal’nikova, E. V. Sklyarov, et al., “Early Proterozoic Postcollision Magmatism at the Southern Flank of the Siberian Craton: New Geochronological Data and Geodynamic Implications,” Dokl. Akad. Nauk 382, 663–667 (2002) [Dokl. Earth Sci. 383, 125–129 (2002)].

    Google Scholar 

  18. G. N. Eby, “The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis,” Lithos 26, 115–134 (1990).

    Article  Google Scholar 

  19. H.-J. Förster, G. Tischendorf, and R. B. Trumbull, “An Evaluation of the Rb vs. (Y + Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks,” Lithos 40, 261–293 (1997).

    Article  Google Scholar 

  20. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol. 42, 2033–2048 (2001a).

    Article  Google Scholar 

  21. C. D. Frost, J. M. Bell, B. R. Frost, and K. R. Chamberlain, “Crustal Growth by Magmatic Underplating: Isotopic Evidence from the Northern Sherman Batholith,” Geology 29, 515–518 (2001b).

    Article  Google Scholar 

  22. T. Holland and J. Blundy, “Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry,” Contrib. Mineral. Petrol. 116, 433–447 (1994).

    Article  Google Scholar 

  23. H. Huppert and R. S. J. Sparks, “The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust,” J. Petrol. 29, 599–624 (1988).

    Google Scholar 

  24. B. M. Jahn, F. Wu, and B. Chen, “Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic,” Episodes 23, 82–92 (2000).

    Google Scholar 

  25. A. Kerr and B. J. Fryer, “Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada,” Chem. Geol. 104, 39–60 (1993).

    Article  Google Scholar 

  26. T. I. Kirnozova, E. V. Bibikova, I. K. Kozakov, et al., “Early Proterozoic Postcollisional Granitoids in Basement Inlier of the Sayan Region of the Siberian Craton: U-Pb Geochronological and Sm-Nd Isotope Data,” in Proceedings of 2nd Conference on Isotope Geochronology: Isotope Geochronology in the Solution of Problems of Geodynamics and Ore Genesis, St. Petersburg, Russia, 2003 (TsIK, St. Petersburg, 2003), pp. 193–195 [in Russian].

    Google Scholar 

  27. E. Koester, A. R. Pawley, A. D. Fernandes, C. C. Porcher, et al., “Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil,” J. Petrol. 43, 1595–1616 (2002).

    Article  Google Scholar 

  28. T. E. Krogh, “A Low-Contamination Method for Hydrothermal Dissolution of Zircon and Extraction of U and Pb for Isotopic Age Determinations,” Geochim. Cosmochim. Acta 73, 485–494 (1973).

    Article  Google Scholar 

  29. B. Landenberger and W. J. Collins, “Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia,” J. Petrol. 37, 145–170 (1996).

    Google Scholar 

  30. V. I. Levitskii, A. I. Mel’nikov, L. Z. Reznitskii, et al., “Postkinematic Early Proterozoic Granitoids of the Southwestern Siberian Craton,” Geol. Geofiz. 43, 717–731 (2002).

    Google Scholar 

  31. K. R. Ludwig, “PbDat for MS-DOS, Version 1.21,” U.S. Geol. Surv. Open-File Rept. 88-542, 35 (1991).

  32. K. R. Ludwig, “ISOPLOT/Ex—A Geochronological Toolkit for Microsoft Excel. Version 2.05,” Berkeley Geochronology Center, Spec. Publ. 1, 1999.

  33. H. Martin, “The Archean Grey Gneisses and the Genesis of Continental Crust,” in Archean Crustal Evolution, Ed. by K. Condie (Elsevier, Amsterdam, 1994).

    Google Scholar 

  34. F. McDermott, N. B. W. Harris, and C. J. Hawkesworth, “Geochemical Constraints on Crustal Anatexis: A Case Study from the Pan-African Damara Granitoids of Namibia,” Contib. Mineral. Petrol. 123, 406–423 (1996).

    Article  Google Scholar 

  35. J.-M. Montel, “A Model for Monazite/Melt Equilibrium and Application to the Generation of Granitic Magmas,” Chem. Geol. 110, 127–146 (1993).

    Article  Google Scholar 

  36. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites (Ob’ed. Inst. Geol. Geofiz. Mineral. Sib Otd. Ross. Akad. Nauk, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  37. A. D. Nozhkin, E. V. Bibikova, O. M. Turkina, and V. A. Ponomarchuk, “Isotope Geochronological Investigations (U-Pb, Ar-Ar, and Sm-Nd) of Subalkaline Porphyritic Granites of the Tarak Massif of the Yenisei Range,” Geol. Geofiz. 44, 879–889 (2003).

    Google Scholar 

  38. A. D. Nozhkin, O. M. Turkina, and M. S. Mel’gunov, “Geochemistry of the Metavolcanosedimentary and Granitoid Rocks of the Onot Greenstone Belt,” Geokhimiya, No. 1, 31–50 (2001) [Geochem. Int. 39, 27–56 (2001)].

  39. P. A. Nurmi and I. Haapala, “The Proterozoic Granitoids of Finland: Granite Types, Metallogeny and Relation to Crustal Evolution,” Bull. Geol. Surv. Finl. 58, 203–233 (1986).

    Google Scholar 

  40. P. J. Patchett and N. T. Arndt, “Nd Isotopes and Tectonics of 1.9–1.7 Crustal Genesis,” Earth Planet. Sci. Lett. 78, 329–338 (1986).

    Article  Google Scholar 

  41. A. E. Patino Douce and N. Harris, “Experimental Constraints on Himalayan Anatexis,” J. Petrol. 39, 689–710 (1998).

    Article  Google Scholar 

  42. A. E. Patino Douce and A. D. Johnston, “Phase Equilibria and Melt Productivity in the Pelite System: Implication for the Origin of Peraluminous Granitoids and Aluminous Granulites,” Contrib. Mineral. Petrol. 107, 202–218 (1991).

    Article  Google Scholar 

  43. R. P. Rapp and E. B. Watson, “Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling,” J. Petrol. 36, 891–931 (1995).

    Google Scholar 

  44. O. M. Rozen and V. S. Fedorovskii, Collisional Granitoids and Layering in the Earth’s Crust (Nauchnyi Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  45. J. Singh and W. Johannes, “Dehydration Melting of Tonalites. Part II. Composition of Melts and Solids,” Contrib. Mineral. Petrol. 125, 26–44 (1996).

    Article  Google Scholar 

  46. K. P. Skjerlie and A. D. Johnston, “Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites,” J. Petrol. 34, 785–815 (1993).

    Google Scholar 

  47. J. S. Stacey and J. D. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  Google Scholar 

  48. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Oceanic Basins, Eds. by A. D. Saunders and M. J. Norry Geol. Soc. Spec. Publ., No 42, 313–345 (1989).

  49. P. J. Sylvester, “Post-Collisional Strongly Peraluminous Granites,” Lithos 45, 29–44 (1998).

    Article  Google Scholar 

  50. O. M. Turkina, “Proterozoic Tonalites and Trondhjemites of the Southwestern Margin of the Siberian Craton: Isotope Geochemical Evidence for the Lower Crustal Sources and Conditions of Melt Formation in Collisional Settings,” Petrologiya 13, 41–55 (2005) [Petrology 13, 35–49 (2005)].

    Google Scholar 

  51. O. M. Turkina, E. V. Bibikova, and A. D. Nozhkin, “Stages and Geodynamic Settings of Early Proterozoic Granite Formation on the Southwestern Margin of the Siberian Craton,” Dokl. Akad. Nauk 388, 779–783 (2003) [Dokl. Earth Sci. 389, 159–165 (2003)].

    Google Scholar 

  52. D. Vielzeuf and J. M. Montel, “Partial Melting of Metagreywackes. Part I. Fluid-Absent Experiments and Phase Relationships,” Contrib. Mineral. Petrol. 117, 375–393 (1994).

    Article  Google Scholar 

  53. E. B. Watson and T. M. Harrison, “Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types,” Earth Planet. Sci. Lett. 64, 295–304 (1983).

    Article  Google Scholar 

  54. J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  55. J. B. Whalen, E. C. Symes, and R. A. Stern, “Geochemical and Nd Isotopic Evolution of Paleoproterozoic Arc-Type Granitoid Magmatism in the Flin Flon Belt, Trans-Hudson Orogen, Canada,” Can. J. Earth Sci. 36, 227–250 (1998).

    Article  Google Scholar 

  56. V. A. Zharikov and L. I. Khodarevskaya, “Melting of Amphibolites: Compositions of Partial Melts at Pressures of 5–25 kbar,” Dokl. Akad. Nauk 341(6), 799–803 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.M. Turkina, A.D. Nozhkin, T.B. Bayanova, 2006, published in Petrologiya, 2006, Vol. 14, No. 3, pp. 282–303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkina, O.M., Nozhkin, A.D. & Bayanova, T.B. Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian craton. Petrology 14, 262–283 (2006). https://doi.org/10.1134/S0869591106030040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591106030040

Keywords

Navigation