Skip to main content
Log in

Effects of Auditory Spatial Masking on the Interhemispheric Asymmetry of Evoked Responses

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The interhemispheric asymmetry of electrical brain activity was investigated in the conditions of spatial auditory masking. Moving test signals were presented either in silence or against the background of stationary maskers of various spatial positions. The spatial properties of the stimuli were defined by interaural level differences (ILDs). Onset-energy responses (ON-responses), motion-onset responses (MORs), and OFF-responses were analyzed. To compute the topograms and to analyze asymmetry, the amplitudes of each component were averaged over the symmetric electrode clusters in the left and right hemispheres. The ON-responses showed a contralateral dominance of the N1 component in silence, and the degree of contralateral bias increased in masking conditions. Interhemispheric asymmetry of the P2 component was absent in silence. However, the P2 amplitude was higher in the right hemisphere in all combinations of masker and signal. The asymmetry of both deflections was maximal when the masker and the initial portion of the signal were separated by 180 deg. On the contrary, the interhemispheric asymmetry of the ON-response was found only in silence: the cN1 deflection was biased to the side contralateral to the signal. The topography of the OFF-response was symmetrical under all experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vaitulevich, S.F., Petropavlovskaya, E.A., Shestopalova, L.B., and Nikitin, N.I., Functional interhemispheric asymmetry of human brain and audition, Hum. Physiol., 2019, vol. 45, no. 2, p. 202. https://doi.org/10.1134/S0362119719020129

    Article  Google Scholar 

  2. Teshiba, T.M., Ling, J., Ruhl, D.A., et al., Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning, Cereb. Cortex, 2013, vol. 23, p. 560.

    Article  PubMed  Google Scholar 

  3. Deouell, L.Y., Bentin, S., and Giard, M.H., Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators, Psychophysiology, 1998, vol. 35, p. 355.

    Article  CAS  PubMed  Google Scholar 

  4. Kaiser, J., Lutzenberger, W., Preissl, H., et al., Right-hemisphere dominance for the processing of sound source lateralization, J. Neurosci., 2000, vol. 20, p. 6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salminen, N.H., Tiitinen, H., Miettinen, I., et al., Asymmetrical representation of auditory space in human cortex, Brain Res., 2010, vol. 1306, p. 93.

    Article  CAS  PubMed  Google Scholar 

  6. Krumbholz, K., Hewson-Stoate, N., and Schönwiesner, M., Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices, J. Neurophysiol., 2007, vol. 97, no. 2, p. 1649.

    Article  PubMed  Google Scholar 

  7. Schönwiesner, M., Krumbholz, K., Rübsamen, R., et al., Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex, Cereb. Cortex, 2007, vol. 17, p. 492.

    Article  PubMed  Google Scholar 

  8. Briley, P.M., Kitterick, P., and Summerfield, A., Evidence for opponent process analysis of sound source location in humans, J. Assoc. Res. Otolaryngol., 2013, vol. 14, p. 83.

    Article  PubMed  Google Scholar 

  9. Litovsky, R.Y., Spatial release from masking, Acoust. Today, 2012, vol. 8, no. 2, p. 18.

    Article  Google Scholar 

  10. Al’tman, Ya.A., and Vaitulevich, S.F., Slukhovye vyzvannye potentsialy cheloveka i lokalizatsiya istochnika zvuka (Human Auditory Evoked Potentials and Sound Source Localization), St. Petersburg: Nauka, 1992.

  11. Al’tman, Ya.A., Prostranstvennyi slukh (Spatial Hearing), St. Petersburg: Inst. Fiziol. im. I. P. Pavlova Ross. Akad. Nauk, 2011.

  12. Bibee, J.M. and Stecker, G.C., Spectrotemporal weighting of binaural cues: effects of a diotic interferer on discrimination of dynamic interaural differences, J. Acoust. Soc. Am., 2016, vol. 140, no. 4, p. 2584.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bőhm, T.M., Shestopalova, L., Bendixen, A., et al., The role of perceived source location in auditory stream segregation: separation affects sound organization, common fate does not, Learn. Percept., 2013, vol. 5, no. 2, p. 55.

    Article  Google Scholar 

  14. Shestopalova, L., Bőhm, T.M., Bendixen, A., et al., Do audio-visual motion cues promote segregation of auditory streams? Front. Neurosci., 2014, vol. 8, p. 64.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pastore, M.T. and Yost, W.A., Spatial release from masking with a moving target, Front. Psychol., 2017, vol. 8, p. 2238.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Varfolomeev, A.L. and Starostina, L.V., Auditory evoked potentials in humans on illusory sound image movement, Ross. Fiziol. Zh. im. I. M. Sechenova, 2006, vol. 92, no. 9, p. 1046.

    CAS  PubMed  Google Scholar 

  17. Getzmann, S., Effect of auditory motion velocity on reaction time and cortical processes, Neuropsychologia, 2009, vol. 47, no. 12, p. 2625. https://doi.org/10.1016/j.neuropsychologia.2009.05.012

    Article  PubMed  Google Scholar 

  18. Getzmann, S. and Lewald, J., Cortical processing of change in sound location: smooth motion versus discontinuous displacement, Brain Res., 2012, vol. 1466, p. 119.

    Article  CAS  PubMed  Google Scholar 

  19. Shestopalova, L.B., Petropavlovskaia, E.A., Semenova, V.V., and Nikitin, N.I., Brain oscillations evoked by sound motion, Brain Res., 2021, vol. 1752, p. 147232.

    Article  CAS  PubMed  Google Scholar 

  20. Semenova, V.V., Shestopalova, L.B., Petropavlovs-kaia, E.A., et al., Latency of motion onset response as an integrative measure of processing sound movement, Hum. Physiol., 2022, vol. 48, no. 4, p. 401. https://doi.org/10.1134/S0362119722040107

    Article  Google Scholar 

  21. Dobrokhotova, T.A.and Bragina, N.N., Levshi (Left-Handers), M.: Kniga, 1994.

    Google Scholar 

  22. Shestopalova, L.B., Petropavlovskaia, E.A., Salikova, D.A., et al., Event-related potentials in conditions of auditory spatial masking in humans, Hum. Physiol., 2022, vol. 48, no. 6, p. 633. https://doi.org/10.1134/S0362119722700098

    Article  Google Scholar 

  23. Delorme, A., Sejnowski, T., and Makeig, S., Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, NeuroImage, 2007, vol. 34, no. 4, p. 1443.

    Article  PubMed  Google Scholar 

  24. Fujiki, N., Riederer, K.A.J., Jousmäki, V., et al., Human cortical representation of virtual auditory space: differences between sound azimuth and elevation, Eur. J. Neurosci., 2002, vol. 16, no. 11, p. 2207.

    Article  PubMed  Google Scholar 

  25. Palomäki, K., Alku, P., Mäkinen, V., et al., Sound localization in the human brain: neuromagnetic observations, Neuroreport, 2000, vol. 11, no. 7, p. 1535.

    Article  PubMed  Google Scholar 

  26. Palomäki, K., Tiitinen, H., Mäkinen, V., et al., Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques, Cognit. Brain Res., 2005, vol. 24, p. 364.

    Article  Google Scholar 

  27. Getzmann, S., Auditory motion perception: onset position and motion direction are encoded in discrete processing stages, Eur. J. Neurosci., 2011, vol. 33, no. 7, p. 1339. https://doi.org/10.1111/j.1460-9568.2011.07617.x

    Article  PubMed  Google Scholar 

  28. Somervail, R., Zhang, F., Novembre, G., et al., Waves of change: brain sensitivity to differential, not absolute, stimulus intensity is conserved across humans and rats, Cereb. Cortex, 2021, vol. 31, no. 2, p. 949.

    Article  CAS  PubMed  Google Scholar 

  29. Lewald, J. and Getzmann, S., Electrophysiological correlates of cocktail-party listening, Behav. Brain Res., 2015, vol. 292, p. 157.

    Article  PubMed  Google Scholar 

  30. Tanaka, H., Hachisuka, K., and Ogata, H., Sound lateralisation in patients with left or right cerebral hemispheric lesions: relation with unilateral visuo-spatial neglect, J. Neurol. Neurosurg. Psychiatry, 1999, vol. 67, no. 4, p. 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zatorre, R. and Penhune, V., Spatial localization after excision of human auditory cortex, J. Neurosci., 2001, vol. 21, p. 6321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spierer, L., Bellmann-Thiran, A., Maeder, Ph., et al., Hemispheric competence for auditory spatial representation, Brain, 2009, vol. 132, part 7, p. 1953.

    Article  PubMed  Google Scholar 

  33. Zatorre, R.J., Mondor, T.A., and Evans, A.C., Auditory attention to space and frequency activates similar cerebral systems, NeuroImage, 1999, vol. 10, no. 5, p. 544.

    Article  CAS  PubMed  Google Scholar 

  34. Brunetti, M., Belardinelly, P., and Caulo, M., Human brain activation during passive listening to sounds from different locations: an fMRI and MEG, Hum. Brain Mapp., 2005, vol. 26, p. 251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tiitinen, H., Salminen, N., Palomäki, K., et al., Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex, Neurosci. Lett., 2006, vol. 396, p. 17.

    Article  CAS  PubMed  Google Scholar 

  36. Petit, L., Simon, G., Joliot, M., et al., Right hemisphere dominance for auditory attention and its modulation by eye position: an event-related fMRI study, Restor. Neurol. Neurosci., 2007, vol. 25, nos. 3–4, p. 211.

    PubMed  Google Scholar 

  37. Richter, N., Schröger, E., and Rübsamen, R., Hemispheric specialization during discrimination of sound sources reflected by MMN, Neuropsychology, 2009, vol. 47, p. 2652.

    Article  Google Scholar 

  38. Getzmann, S. and Lewald, J., Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion, Hear. Res., 2010, vol. 259, nos. 1–2, p. 44.

    Article  PubMed  Google Scholar 

  39. Abeles, M. and Goldstein, M.H., Jr., Responses of single units in the primary auditory cortex of the cat to tones and to tone pairs, Brain Res., 1972, vol. 42, no. 2, p. 337.

    Article  CAS  PubMed  Google Scholar 

  40. He, J., Hashikawa, T., Ojima, H., and Kinouchi, Y., Temporal integration and duration tuning in the dorsal zone of cat auditory cortex, J. Neurosci., 1997, vol. 17, no. 7, p. 2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Recanzone, G.H., Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys, Hear. Res., 2000, vol. 150, no. 1, p. 104.

    Article  CAS  PubMed  Google Scholar 

  42. Phillips, D.P., Hall, S.E., and Boehnke, S.E., Central auditory onset responses, and temporal asymmetries in auditory perception, Hear. Res., 2002, vol. 167, nos. 1–2, p. 192.

    Article  CAS  PubMed  Google Scholar 

  43. Szabó, B.T., Denham, S.L., and Winkler, I., Computational models of auditory scene analysis: a review, Front. Neurosci., 2016, vol. 10, p. 524.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Shestopalova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were carried out in accordance with the principles of biomedical ethics formulated in the Declaration of Helsinki of 1964 and its subsequent updates and were approved by the Ethics Commission of the Institute of Physiology, Russian Academy of Sciences (St. Petersburg) (Protocol no. 22-02).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

INFORMED CONSENT

Each participant in the study provided a voluntary written informed consent signed by him after explaining to him the potential risks and benefits, as well as the nature of the upcoming study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestopalova, L.B., Petropavlovskaya, E.A., Salikova, D.A. et al. Effects of Auditory Spatial Masking on the Interhemispheric Asymmetry of Evoked Responses. Hum Physiol 49, 333–346 (2023). https://doi.org/10.1134/S0362119723600054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723600054

Keywords:

Navigation