Skip to main content
Log in

Gender Differences in Thyroid Function among Euthyroid Subjects with Positive and Negative Thyroid Antibodies (Antibodies to Thyroid Peroxidase and/or Thyroglobulin)

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The aim of the study was to demonstrate gender differences in thyroid function among euthyroid subjects, that had negative values of antibodies, and euthyroid subjects, that had positive antibodies (antibodies to thyroid peroxidase—AntiTPO and/or antibodies to thyroglobulin—AntiTG). A total of 200 clinically healthy people (85 women and 115 men) were enrolled in this study and classified into groups depending on gender and level of autoantibodies in the blood. Group A (59 women and 100 men) had normal values of thyroid hormones and negative values of antibodies according to the test instructions, i.e. AntiTPO < 50 IU/mL and/or AntiTG < 100 IU/mL. Group B (26 women and 15 men) had normal values of thyroid hormones and positive antibodies, i.e. AntiTPO ≥ 50 IU/mL and/or AntiTG ≥ 100 IU/mL. Serum hormones of the pituitary-thyroid system, thyroglobulin and antibodies concentration was measured by enzyme immunoassay. Analysis of gender differences in thyroid function in individuals with positive thyroid antibodies found statistically significantly higher T4 values in women compared to men. Men with positive antibodies had an insignificant increase in thyroid-stimulating hormone (TSH) levels against the background of a statistically significant decrease in the values of the (T3 + T4)/TSH ratio. Women with positive antibodies were characterized by a statistically significant decrease in thyroglobulin levels. In all analyzed groups, thyroglobulin negatively correlated with AntiTG, and in men of Group B this relationship became stronger. In Group B in both men and women AntiTPO had negative correlation with (T3 + T4)/TSH ratio. Our results indicate that the measurement of thyroid indices, in combination with the determination of serum levels of thyroid autoantibodies and thyroglobulin, may be useful in identifying euthyroid subjects at potential risk of developing thyroid disease and thus be helpful in making early treatment decisions to prevent a prolonged course of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Haddow, J.E., Palomaki, G.E., Allan, W.C., et al., Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child, N. Engl. J. Med., 1999, vol. 341, no. 8, p. 549.

    Article  CAS  PubMed  Google Scholar 

  2. Thangaratinam, S., Tan, A., Knox, E., et al., Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence, BMJ, 2011, vol. 342, p. d2616.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leslie, D., Lipsky, P., Notkins, A.L., Autoantibodies as predictors of disease, J. Clin. Invest., 2001, vol. 108, no. 10, p. 1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macdonald, I.K., Parsy-Kowalska, C.B., and Chapman, C.J., Autoantibodies: opportunities for early cancer detection, Trends Cancer, 2017, vol. 3, no. 3, p. 198.

    Article  CAS  PubMed  Google Scholar 

  5. Li, C., Zhou, J., Huang, Z., et al., The clinical value and variation of antithyroid antibodies during pregnancy, Dis. Markers, 2020, vol. 2020, p. 8871951.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rabiee, A., Salman, M., Tourky, M., et al., Peroxidase antibodies and histopathological outcomes in Egyptian patients subjected to total thyroidectomy for non-malignant nodular goiter, Int. J. Gen. Med., 2021, vol. 14, p. 2421.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chiovato, L, Magri, F, and Carlé, A., Hypothyroidism in context: where we’ve been and where we’re going, Adv. Ther., 2019, vol. 36, suppl. 2, p. 47.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chaker, L., Bianco, A.C., Jonklaas, J., and Peeters, R.P., Hypothyroidism, Lancet, 2017, vol. 390, no. 10101, p. 1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zandman-Goddard, G., Peeva, E., and Shoenfeld, Y., Gender and autoimmunity, Autoimmun. Rev., 2007, vol. 6, no 6, p. 366.

    Article  CAS  PubMed  Google Scholar 

  10. Vanderpump, M.P., Tunbridge, W.M., French, J.M., et al., The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey, Clin. Endocrinol. (Oxford), 1995, vol. 43, no. 1, p. 55.

    Article  CAS  Google Scholar 

  11. Balucan, F.S., Morshed, S.A., and Davies, T.F., Thyroid autoantibodies in pregnancy: their role, regulation and clinical relevance, J. Thyroid Res., 2013, vol. 2013, p. 182472.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jonsdottir, B., Lundgren, M., Wallengren, S. et al., Are perinatal events risk factors for childhood thyroid autoimmunity? Eur. Thyroid. J., 2017, vol. 6, no. 6, p. 298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaloumenou, I., Mastorakos, G., Alevizaki, M., et al., Thyroid autoimmunity in schoolchildren in an area with long-standing iodine sufficiency: correlation with gender, pubertal stage, and maternal thyroid autoimmunity, Thyroid, 2008, vol. 18, no. 7, p. 747.

    Article  CAS  PubMed  Google Scholar 

  14. Feigl, S., Obermayer-Pietsch, B., Klaritsch, P., et al., Impact of thyroid function on pregnancy and neonatal outcome in women with and without PCOS, Biomedicines, 2022, vol. 10, no. 4, p. 750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franceschi, C., Ostan, R., Mariotti, S., et al., The aging thyroid: a reappraisal within the geroscience integrated perspective, Endocr. Rev., 2019, vol. 40, no. 5, p. 1250.

    PubMed  Google Scholar 

  16. Farebrother, J., Zimmermann, M.B., and Andersson, M., Excess iodine intake: sources, assessment, and effects on thyroid function, Ann. N. Y. Acad. Sci., 2019, vol. 1446, no. 1, p. 44.

    CAS  PubMed  Google Scholar 

  17. Pedersen, I.B., Knudsen, N., Carlé, A., et al., A cautious iodization programme bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population, Clin. Endocrinol. (Oxford), 2011, vol. 75, no. 1, p. 120.

    Article  CAS  Google Scholar 

  18. Plazinska, M.T., Sawicka-Gutaj, N., Czarnywojtek, A., et al., Radioiodine therapy and Graves’ disease—myths and reality, PLoS One, 2020, vol. 15, no. 1. e0226495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gorini, F., Sabatino, L., Pingitore, A., and Vassalle, C., Selenium: an element of life essential for thyroid function, Molecules, 2021, vol. 26, no. 23, p. 7084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rayman, M.P. and Duntas, L.H., Selenium deficiency and thyroid disease, The Thyroid and Its Diseases: a Comprehensive Guide for the Clinician, Luster, M., Duntas, L., and Wartofsky, L., Eds., Berlin: Springer-Verlag, 2019, p. 109.

    Google Scholar 

  21. Sun, Z., Xu, Z., Wang, D., et al., Selenium deficiency inhibits differentiation and immune function and imbalances the Th1/Th2 of dendritic cells, Metallomics, 2018, vol. 10, no. 5, p. 759.

    Article  CAS  PubMed  Google Scholar 

  22. Dersch, R., Tebartz, van Elst, L., Hochstuhl, B., et al., Anti-thyroid peroxidase and anti-thyroglobulin autoantibodies in the cerebrospinal fluid of patients with unipolar depression, J. Clin. Med., 2020, vol. 9, no. 8, p. 2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caglar, E., Ugurlu, S., Ozenoglu, A., et al., Autoantibody frequency in celiac disease, Clinics (São Paulo), 2009, vol. 64, no. 12, p. 1195.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meena, A. and Nagar, P., Pregnancy outcome in euthyroid women with anti-thyroid peroxidase antibodies, J. Obstet. Gynaecol. India, 2016, vol. 66, no. 3, p. 160.

    Article  CAS  PubMed  Google Scholar 

  25. Elfimova, A.E., Tipisova, E.V., Molodovskaya, I.N., et al., Hormonal profile of residents of the European North with different TSH levels, Probl. Reprod., 2021, vol. 27, no. 3, p. 49.

    Article  Google Scholar 

  26. Fröhlich, E. and Wahl, R., Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases, Front. Immunol., 2017, vol. 8, p. 521.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tipisova, E.V., Molodovskaya, I.N., Alikina, V.A., and Elfimova, A.E., Gender differences in the content of thyroid hormones in different groups of the population of the arctic, Yakut. Med. Zh., 2022, no. 1(77), p. 31.

  28. Liu, J., Duan, Y., Fu, J., and Wang, G., Association between thyroid hormones, thyroid antibodies, and cardiometabolic factors in non-obese individuals with normal thyroid function, Front. Endocrinol. (Lausanne), 2018, vol. 5, no. 9, p. 130.

    Article  Google Scholar 

  29. Walsh, J.P., Bremner, A.P., Feddema, P., et al., Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques, J. Clin. Endocrinol. Metab., 2010, vol. 95, no. 3, p. 1095.

    Article  CAS  PubMed  Google Scholar 

  30. Ricci, D., Brancatella, A., Marinò, M., et al., The detection of serum IgMs to thyroglobulin in subacute thyroiditis suggests a protective role of IgMs in thyroid autoimmunity, J. Clin. Endocrinol. Metab., 2020, vol. 105, no. 6, p. dgaa038.

  31. Li, L., Kalaga, R., and Paul, S., Proteolytic components of serum IgG preparations, Clin. Exp. Immunol., 2000, vol. 120, no. 2, p. 261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sibileva, E.N., Seasonal features of transient hyperthyrotropinemia in newborns, Probl. Endokrinol., 2004, vol. 50, no. 5, p. 11.

    Article  Google Scholar 

  33. Siriwardhane, T., Krishna, K., Ranganathan, V., et al., Significance of antiTPO as an early predictive marker in thyroid disease, Autoimm. Dis., 2019, vol. 2019, p. 1684074.

    Google Scholar 

  34. Minxuri, D., Mitre, A., Bino, S., et al., Screening tests for thyroid dysfunction; is TSH sufficient? Int. J. Health Life Sci., 2021, vol. 7, no. 3, p. 1.

    Google Scholar 

Download references

Funding

The reported study was funded by the FCIAR UrB RAS according to the research project: “Photoperiodic dependence of the physiological effects of dopamine on the functional activity of the pituitary-thyroid gland and pituitary-gonadal systems in inhabitants of the Arctic territories” (no. 122011800392-3).

Author information

Authors and Affiliations

Authors

Contributions

I.N. Molodovskaya—data analysis, literature review, writing the article; E.V. Tipisova—study design, results analysis; A.E. Elfimova—collection and processing of material, involved in writing the article; V.A. Alikina—collection and processing of material. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to I. N. Molodovskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study was conducted in accordance with ethical principles of the WMA Declaration of Helsinki (1964, ed. 2013) and approved by the FECIAR UrB RAS Ethics Committee (Minutes no. 2 dated November 04, 2016, Archangelsk).

INFORMED CONSENT

Written informed consent was obtained from all participants.

COMPETING INTERESTS

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molodovskaya, I.N., Tipisova, E.V., Elfimova, A.E. et al. Gender Differences in Thyroid Function among Euthyroid Subjects with Positive and Negative Thyroid Antibodies (Antibodies to Thyroid Peroxidase and/or Thyroglobulin). Hum Physiol 49, 88–94 (2023). https://doi.org/10.1134/S0362119722600242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722600242

Keywords:

Navigation