Skip to main content
Log in

Hypoxic Adaptation and Training: Historic, Biomedical, and Sport Aspects

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Absract

—The review outlines the milestones in studying the processes of human adaptation to hypoxia and hypoxic training applications in medicine and sports. Contribution of Russian science to these investigations is disclosed and literary data on the mechanisms of hypoxic adaptation and models and effectiveness of hypoxic training are summarized. The paper is concluded by discussion of hypoxic training potential in high-performance sports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bickler, P.E. and Buck, L.T., Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability, Annu. Rev. Physiol., 2007, vol. 69, p. 145.

    Article  CAS  Google Scholar 

  2. Meerson, F.Z., Tverdokhlib, V.P., Boyev, V.M., et al., Adaptatsiya k periodicheskoi gipoksii v terapii i profilaktike (Adaptation to Periodic Hypoxia in Therapy and Prophylactics), Moscow, 1989.

    Google Scholar 

  3. Goranchuk, V.V., Sapova, N.I., and Ivanov, A.O., Gipoksiterapiya (Hypoxytherapy), St. Petersburg, 2003.

    Google Scholar 

  4. Nikolaeva, A.G., Ispol’zovanie adaptatsii k gipoksii v meditsine i sporte (Using Adaptation to Hypoxia in Medicine and Sport), Vitsebsk, 2015.

  5. Strelkov, R.B. and Chizhov, A.Y., Preryvistaya normobaricheskaya gipoksiya v profilaktike, lechenii i reabilitatsii (Intermittent Normobaric Hypoxia in the Prophylactics, Treatment and Rehabilitation), Yekaterinburg, 2001.

    Google Scholar 

  6. Zenko, M.Y. and Rybnikova, E.A., Cross adaptation: from F.Z. Meerson to our days: 1. Adaptation, cross adaptation and cross-sensitization, Usp. Fiziol. Nauk, 2019, vol. 50, no. 4, p. 3.

    Google Scholar 

  7. Berezovsky, V.A. and Levashov, M.I., Vvedenie v oroterapiyu (Introduction to Orotherapy), Kiev, 2000.

    Google Scholar 

  8. Bert, P., La pression barométrique: recherches de physiologie expérimentale, Paris, 1878.

    Book  Google Scholar 

  9. Haldane, J.S., Kellas, A.M., and Kennaway, E.L., Experiments on acclimatization to reduced atmospheric pressure, J. Physiol., 1919, vol. 53, p. 181.

    Article  CAS  Google Scholar 

  10. Jenkins, D.R., Dressing for Altitude: US Aviation Pressure Suits—Wiley Post to Space Shuttle, Washington: NASA SP, 2012.

    Google Scholar 

  11. Smolin, V.V., Sokolov, G.M., and Pavlov, B.N., Vodolaznye spuski i ikh meditsinskoe obespechenie (Diving and Its Medical Support), Moscow, 2001.

    Google Scholar 

  12. Vladimirov, G.E., Galvyalo, M.Y., Goryukhina, T.A., et al., Use of the residence in a mountain climate for the high-altitude pilot training purposes, in Kislorodnoe golodanie i bor’ba s nim (Hypoxia and Fight against It), 1939, p. 4.

  13. Egorov, P.I., Vliyanie vysotnykh poletov na organizm letchika (Effect of High Altitude Flight on a Pilot’s Body Systems), Moscow, 1937.

  14. Streltsov, V.V., The influence of low barometric pressure on the organism, Vopr. Aviats. Med., 1939, vols. 5–6, no. 1, p. 60.

    Google Scholar 

  15. Sirotinin, N.N., Effect of acclimatization to high mountain climate on adaptation to decreased atmospheric pressure using a decompression chamber, Arkh. Patol. Anat. Patol. Fizsiol., 1940, vol. 6, nos. 1–2, p. 35.

    Google Scholar 

  16. Rozenblyum, D.E., Some conclusions derived from the observation of the effect of a low atmosphere pressure on the body, Voen.-Med. Zh., 1948, no. 1, p. 36.

  17. Agadzhanyan, N.A. and Mirrakhimov, M.M., Gory i rezistentnost’ organizma (Mountains and Organism Resistance), Moscow, 1970.

    Google Scholar 

  18. Berezovskii, V.A. and Levashov, M.I., The build-up of human reserve potential by exposure to intermittent normobaric hypoxia, Aviakosm. Ekol. Med., 2000, vol. 34, no. 2, p. 39.

    CAS  Google Scholar 

  19. Kolchinskaya, A.Z., Abazova, Z.H., Kumykov, V.K., et al., The basic milestones of the physiology of hypoxia development, Probl. Sots. Gig., Zdravookhr. Istor. Med., 2002, no. 2, p. 52.

  20. Lukyanova, L.D., Bioenergetic hypoxia: definition, mechanisms and methods of correction, Byull. Eksp. Biol. Med., 1997, vol. 124, no. 9, p. 244.

    Google Scholar 

  21. Serebrovskaya, T.V., Karaban, I.N., Kolesnikova, E.E., et al., Human hypoxic ventilatory response with blood dopamine content under intermittent hypoxic training, Can. J. Physiol. Pharmacol., 1999, vol. 77, p. 967.

    Article  CAS  Google Scholar 

  22. Serebrovska, T.V., Portnychenko, A.G., Portnichen-ko, V.I., et al., Effects of intermittent hypoxia training on leukocyte pyruvate dehydrogenase kinase 1 (PDK-1) mRNA expression and blood insulin level in prediabetes patients, Eur. J. Appl. Physiol., 2019, vol. 119, no. 3, p. 813.

    Article  CAS  Google Scholar 

  23. Rybnikova, E.A., Baranova, K.A., Gluschenko, T.S., et al., Role of HIF-1 in neuronal mechanisms of adaptation to psychoemotional and hypoxic stress, Int. J. Physiol. Pathophysiol., 2015, vol. 6, no. 1, p. 1.

    Article  Google Scholar 

  24. Karash, Yu.M., Strelkov, R.B., and Chizhov, A.Ya., Normobaricheskaya gipoksiya v lechenii, profilaktike i reabilitatsii (Normobaric Hypoxia in Treatment, Prevention and Rehabilitation), Moscow, 1988.

    Google Scholar 

  25. Cao, K.Y., Zwillich, C.W., Berthon-Jones, M., et al., Increased normoxic ventilation induced by repetitive hypoxia in conscious dogs, J. Appl. Physiol., 1992, vol. 73, p. 2083.

    Article  CAS  Google Scholar 

  26. Rodriguez, F.A., Casas, H., Casas, M., et al., Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity, Med. Sci. Sports Exerc., 1999, vol. 31, p. 264.

    Article  CAS  Google Scholar 

  27. Navarrete-Opazo, A. and Mitchell, G.S., Therapeutic potential of intermittent hypoxia: a matter of dose, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2014, vol. 307, no. 10, p. R1181.

    CAS  Google Scholar 

  28. Ragozin, O.N., Pashchenko, I.G., and Balykin, M.V., Normobaricheskaya gipoksiya v khronoterapii bronkhial’noy astmy (Normobaric Hypoxia in Chronotherapy of Bronchial Asthma), Ul’yanovsk, 2001.

    Google Scholar 

  29. Semenza, G.L., HIF-1: mediator of physiological and pathophysiological responses to hypoxia, J. Appl. Physiol., 2000, vol. 88, p. 1474.

    Article  CAS  Google Scholar 

  30. Jiang, B.H., Semenza, G.L., Bauer, C., et al., Hypoxia-inducible factor-1 levels vary exponentially over a physiologically relevant range of O2 tension, Am. J. Physiol.: Cell Physiol., 1996, vol. 271, p. C1172.

    Article  CAS  Google Scholar 

  31. Yu, A.Y., Frid, M.G., Shimoda, L.A., et al., Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung, Am. J. Physiol.: Lung Cell Mol. Physiol., 1998, vol. 275, p. L818.

    CAS  Google Scholar 

  32. Easton, P.A., Slykerman, L.J., and Anthonisen, N.R., Ventilatory response to sustained hypoxia in normal adults, J. Appl. Physiol., 1986, vol. 61, p. 906.

    Article  CAS  Google Scholar 

  33. Nieuwenhuijs, D., Sarton, E., Teppema, L., et al., Propofol for monitored anesthesia care: implications on hypoxic control of cardiorespiratory responses, Anesthesiology, 2000, vol. 92, p. 46.

    Article  CAS  Google Scholar 

  34. Turner, D.L. and Mitchell, G.S., Long-term facilitation of ventilation following repeated hypoxic episodes in awake goats, J. Physiol., 1997, vol. 499, p. 5.

    Article  Google Scholar 

  35. Dwinell, M.R., Janssen, P.L., and Bisgard, G.E., Lack of long-term facilitation of ventilation after exposure to hypoxia in goats, Respir. Physiol., 1997, vol. 108, p. 1.

    Article  CAS  Google Scholar 

  36. Kraiczi, H., Magga, J., Sun, X.Y., et al., Hypoxic pressor response, cardiac size, and natriuretic peptides are modified by long-term intermittent hypoxia, J. Appl. Physiol., 1999, vol. 87, p. 2025.

    Article  CAS  Google Scholar 

  37. Mayfield, K.P., Hong, E.J., Carney, K.M., et al., Potential adaptations to acute hypoxia: Hct, stress proteins, and set point for temperature regulation, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 1994, vol. 266, p. R1615.

    CAS  Google Scholar 

  38. Kitaev, M.I., Aitbaev, K.A., and Lyamtsev, V.T., Effect of hypoxic hypoxia on development of atherosclerosis in rabbits, Aviakosm. Ekol. Med., 1999, vol. 33, p. 54.

    CAS  Google Scholar 

  39. Zhuang, J. and Zhou, Z., Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms, Biol. Sig. Recep., 1999, vol. 8, p. 316.

    Article  CAS  Google Scholar 

  40. Volkov, N.I., Interval’naya trenirovka v sporte (Interval Training in Sports), Moscow, 2000.

    Google Scholar 

  41. Atamanov, A.A. and Buikov, V.A., Gipobaroterapiya trevozhnykh rasstroystv pri nevrozakh i psikhosomaticheskikh zabolevaniyakh (Hypobarotherapy of Anxious Disorders at Neuroses and Psychosomatic Diseases), Chelyabinsk, 1999.

  42. Kogan, O.G. and Naydin, B.L., Meditsinskaya reabilitatsiya v nevrologii i neyrokhirurgii (Medical Rehabilitation in Neurology and Neurosurgery), Moscow, 1988.

    Google Scholar 

  43. Dardouri, U., Interval hypoxic training in the preparation of high qualification players, Extended Abstract of Cand. Sci. Dissertation, Moscow, 1997.

  44. Ganapolsky, V.P., Avdyushenko, S.A., Grinchuk, S.S., et al., Influence of the hypoxic trainings and pharmaceutic correction on the physical working capacity and the autonomous regulation in mountain climbers, Aviakosm. Ekol. Med., 2019, vol. 53, no. 5, p. 77.

    Google Scholar 

  45. Hamlin, M.J. and Hellemans, J., Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes, J. Sports Sci., 2007, vol. 25, no. 4, p. 431.

    Article  Google Scholar 

  46. Whyte, P.G., Lane, A., Pedlar, C., et al., Intermittent hypoxic training in process of pre-acclimation among GB biathlon team preparing for the 2002 Olympic Games, 12th Commonwealth International Sport Conference: Abstacts of Reports, 2002, p. 19.

  47. Adhikari, S., Sreeman, R., Saraswat, S., et al., Does ‘live high-train low’ hypoxic training really improves endurance capacity of long distance runners? Eur. Respir. J., 2017, vol. 50, suppl. 61, p. PA2269.

    Google Scholar 

  48. Knaupp, W., Khilnani, S., Sherwood, J., et al., Erythropoietin response to acute normobaric hypoxia in humans, J. Appl. Physiol., 1992, vol. 73, p. 837.

    Article  CAS  Google Scholar 

  49. Truijens, M.J., Toussaint, H.M., Dow, J., et al., Effect of high-intensity hypoxic training on sea-level swimming performances, J. Appl. Physiol., 2003, vol. 94, p. 733.

    Article  CAS  Google Scholar 

  50. Jacobs, R.A., Rasmussen, P., Siebenmann, C., et al., Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes, J. Appl. Physiol., 2011, vol. 111, p. 1422.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 19-015-00336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Rybnikova.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenko, M.Y., Rybnikova, E.A. Hypoxic Adaptation and Training: Historic, Biomedical, and Sport Aspects. Hum Physiol 48, 833–837 (2022). https://doi.org/10.1134/S0362119722070106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722070106

Keywords:

Navigation