Skip to main content
Log in

Negative Components of Visually Evoked Responses in the Saccadic Go/NoGo Paradigm in “Fast” and “Slow” Subjects

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The parameters and topography of negative ERP components in response to (Go) and (NoGo) stimuli, depending on the individual saccadic latency (LP), were analyzed in a Go/NoGo paradigm. The objective of the work was to study the functional significance of the N1 (150) and N2 (250) components in “fast” (LP = 180 ± 7 ms) and “slow” (LP = 271 ± 8 ms) subjects in a saccadic Go/NoGo paradigm. The N1 component had higher amplitude in slow subjects in the Go conditions and in fast subjects in the NoGo conditions. In NoGo conditions, the N1 latency was higher in fast subjects, while slow subjects had higher N2 latency. The differences detected in the parameters and topography of the N1 and N2 components allow us to consider the Go-N1 component as a correlate of directed attention at the stage of stimulus analysis in slow subjects and at the stage of decision-making and saccade initiation in fast subjects. The NoGo-N2 component may be considered as a correlate of decision-making and response inhibition in slow subjects and as a correlate of inhibitory response monitoring and memory updating in “fast” subjects. The detected differences prior to a saccadic response in the pre-stimulus period may be explained by a higher level of motor readiness in fast subjects and a higher level of nonspecific inhibition in the motor system of slow subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Becker, W., Saccadic eye movements as a control system, in The Neurobiology of Saccadic Eye Movements, Amsterdam: Elsevier, 1989, p. 43.

    Google Scholar 

  2. Fischer, B. and Breitmeyer, B., Mechanism of visual attention revealed by saccadic eye movement, Neuropshychology, 1987, vol. 25, no. 1, p. 73.

    Article  CAS  Google Scholar 

  3. Findley, J.M. and Walker, R., A model of saccadic generation based on parallel processing and competitive inhibition, Behav. Brain Sci., 1999, vol. 22, no. 4, p. 661.

    Article  Google Scholar 

  4. Eimer, M., van Velzen, J., Cherry, E., and Press, C., ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention, Brain Res., 2007, vol. 1135, no. 1, p. 154.

    Article  CAS  Google Scholar 

  5. Gaymard, B., Ploner, C.J., Rivaud, S., et al., Cortical control of saccades, Exp. Brain Res., 1998, vol. 123, nos. 1–2, p. 159.

    Article  CAS  Google Scholar 

  6. De Haan, B., Morgan, P.S., and Rorden, Ch., Covert orienting of attention and overt eye movements activate identical brain regions, Brain Res., 2008, vol. 1204, p. 102.

    Article  CAS  Google Scholar 

  7. Kable, J. and Glimcher, P., The neurobiology of decision: consensus and controvercy, Neuron, 2009, vol. 63, no. 6, p. 733.

    Article  CAS  Google Scholar 

  8. Ivanitskii, A.M., Strelets, V.B., and Korsakov, I.A., Informatsionnye protsessy mozga i psikhicheskaya deyatel’nost’ (Information Processes of the Brain and Psychical Activity), Moscow: Nauka, 1984.

  9. Gnezditskii, V.V., Vyzvannye potentsialy mozga v klinicheskoi praktike (Evoked Brain Potentials in Clinical Practice), Moscow: MEDpress Inform, 2003.

  10. Portella, C., Machado, C., Arias-Carrion, O., et al., Relationship between early and late stages of information processing even-related potential study, Neurol. Int., 2012, vol. 4, p. 71. https://doi.org/10.4081/ni.2012.e16

    Article  Google Scholar 

  11. Jagla, F. and Zikmund, V., Changes in bioelectrical brain activity related to programming of saccadic eye movement, ANS: J. Neurocognit. Res., 1989, vol. 31, p. 142.

    CAS  Google Scholar 

  12. Slavutskaya, M.V., Moiseeva, V.V., and Shul’govskii, V.V., Attention and eye movements. II. Psychophysiological concepts, neurophysiological models and EEG correlates, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2008, vol. 58, no. 2, p. 131.

    Google Scholar 

  13. Lisberger, S., Fuch, A., King, W., and Evinger, L., Effect of mean reaction time on saccadic responses to two step stimuli with horizontal and vertical components, Visual Res., 1975, vol. 15, p. 1021.

    CAS  Google Scholar 

  14. Slavutskaya, M.V., Karelin, S.A., Kotenev, A.V., and Shulgovsky, V.V., The positive components of the evoked response to visual stimuli in the saccadic “go/nogo” paradigm in humans, Hum. Physiol., 2019, vol. 45, no. 2, p. 115.

    Article  Google Scholar 

  15. Rusalov, V.M. and Trofimova, I.N., Representation of types of mental activity in various temperament models, Psikhol. Zh., 2011, vol. 32, no. 3, p. 74.

    Google Scholar 

  16. Iragui, V.J., Kutas, M., Mitchiner, M.R., and Hillyard, S.A., Effects of aging on event-related brain potentials and reaction times in an auditory oddball task, Psychophysiology, 1993, vol. 30, no. 1, p. 10.

    Article  CAS  Google Scholar 

  17. Bahramali, H., Gordon, E., Li, W.M., et al., Fast and slow reaction time changes reflected in ERP brain function, Int. J. Neurosci., 1998, vol. 93, nos. 1–2, p. 75.

    Article  CAS  Google Scholar 

  18. Hillyard, S.A., Vogel, E.K., and Look, S.J., Sensory gain control (amplification) as a mechanism of selective attention (electrophysiological and neuroimaging evidence), Philos. Trans. R. Soc., B, 1998, vol. 353, no. 1373, p. 1267.

  19. Machinskaya, R.I., Neurophysiological mechanisms of voluntary attention: a review, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2003, vol. 53, no. 2, p. 133.

    Google Scholar 

  20. Shibasaki, H., Barret, G., Halliday, E., and Halliday, A., Components of the movement-related cortical potential and their scalp topography, EEG Clin. Neurophysiol., 1980, vol. 49, nos. 3–4, p. 213.

    Article  CAS  Google Scholar 

  21. Ivanova, M.P., Korkovye mekhanizmy proizvol’nykh dvizhenii u cheloveka (Human Cortical Mechanisms of Voluntary Movements), Moscow: Nauka, 1991.

  22. Praamastra, P., Stegeman, D.F., Horstinc, M.I., et al., Movement-related potentials preceding voluntary movement are modulated by the mode of movement selection, Exp. Brain Res., 1995, vol. 103, no. 3, p. 429.

    Google Scholar 

  23. Slavutskaya, M.V. and Shulgovskii, V.V., Presaccadic brain potentials in conditions of covert attention orienting, Span. J. Psychol., 2007, vol. 10, no. 2, p. 277.

    Article  Google Scholar 

  24. Tian, Y., Liang, S., and Yao, D., Attentional orienting and response inhibition: insights from spatial-temporal neuroimaging, Neurosci. Bull., 2014, vol. 30, no. 1, p. 141.

    Article  Google Scholar 

  25. Omori, M., Yamada, H., Murata, T., et al., Neuronal substrates participating in attentional set-shifting of rules for visually guided motor selection, a functional magnetic response imaging investigation, Neurosci. Res., 1999, vol. 33, no. 4, p. 317.

    Article  CAS  Google Scholar 

  26. Rushworth, M.F.S., Nixon, Ph.D., Renowden, Sh., et al., The left parietal cortex and motor attention, Neuropsychologia, 1997, vol. 35, no. 9, p. 1261.

    Article  CAS  Google Scholar 

  27. Posner, M., Orienting of attention, Q. J. Exp. Psychol., 1980, vol. 32, no. 1, p. 3.

    Article  CAS  Google Scholar 

  28. Coull, J.T., Neural correlates of attention and arousal insights from elrctrophysiology, functional neuroimaging and psychopharmacology, Prog. Neurobiol., 1998, vol. 55, no. 4, p. 343.

    Article  CAS  Google Scholar 

  29. Corbetta, M. and Shulman, G.L., Control of goal-directed and stimulus-driven attention in the brain, Nat. Rev. Neurosci., 2002, vol. 3, no. 3, p. 201.

  30. Desimone, R. and Duncan, J., Neural mechanisms of selective visual attention, Annu. Rev. Neurosci., 1995, vol. 18, p. 193.

    Article  CAS  Google Scholar 

  31. Miller, E.K. and Cohen, J.D., An integrative theory of prefrontal cortex function, Annu. Rev. Neurosci., 2001, vol. 24, p. 167.

    Article  CAS  Google Scholar 

  32. Foxe, J.J. and Simpson, G.V., Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing, Exp. Brain Res., 2002, vol. 142, no. 1, p. 139.

    Article  Google Scholar 

  33. Filipović, S.R., Jahanshahi, M., and Rothwell, J.C., Cortical potentials related to the nogo decision, Exp. Brain Res., 2000, vol. 132, no. 3, p. 411.

    Article  Google Scholar 

  34. Everling, S., Korappmann, P., and Flohr, H., Cortical potentials preceding pro- and antisaccades in man, EEG Clin. Neurophisiol., 1997, vol. 102, no. 4, p. 356.

    Article  CAS  Google Scholar 

  35. Greenhouse, I., Sias, A., Labruna, L., and Ivry, R.V., Nonspecific inhibition of the motor system during response preparation, J. Neurosci., 2015, vol. 35, no. 30, p. 10675.

    Article  CAS  Google Scholar 

  36. Eimer, M., Effects of attention and stimulus probability on ERPs in a Go/Nogo task, Biol. Psychol., 1993, vol. 35, no. 2, p. 123.

    Article  CAS  Google Scholar 

  37. Falkenstein, M., Koshlykova, N.A., Kiroj, V.N., et al., Late ERP components in visual and auditory Go/Nogo tasks, EEG Clin. Neurophysiol., 1995, vol. 96, no. 1, p. 36.

    CAS  Google Scholar 

  38. Neuwenhuis, S., Yeung, N., and Cohen, J.D., Stimulus modality, perceptual overlap, and the go/no-go N2, Psychophysiology, 2004, vol. 41, no. 1, p. 57.

    Google Scholar 

  39. Friedrich, J. and Beste, Ch., Paradoxical, causal effects of sensory gain modulation on motor inhibitory control—a tDCS, EEG-source localization study, Sci. Rep., 2018, vol. 8, no. 1, p. 17486.

    Article  Google Scholar 

  40. Lavric, A., Pizzagalli, D.A., and Forstmeier, S., When ‘go’ and ‘nogo’ are equally frequent: ERP components and cortical tomography, Eur. J. Neurosci., 2004, vol. 20, no. 9, p. 2483.

    Article  Google Scholar 

  41. Chambers, Ch.D., Garavan, H., and Bellgrove, M.A., Insights into the neural basis of response inhibition from cognitive and clinical neuroscience, Neurosci. Biobehav. Rev., 2009, vol. 33, no. 5, p. 631.

    Article  Google Scholar 

  42. Pierrot-Deseiligny, Ch., Ploner, C.J., Muri, R.M., et al., Effect of cortical lesion on saccadic: eye movements in humans, Ann. N.Y. Acad. Sci., 2002, vol. 956, p. 216.

    Article  Google Scholar 

  43. Hayden, B.Y., Nair, A.C., McCoy, A.N., and Platt, M.L., Posterior cingulate cortex mediates outcome-contingent allocation of behavior, Neuron, 2008, vol. 60, no. 1, p. 19.

    Article  CAS  Google Scholar 

  44. Goldman-Rakic, P.S., Circuitry of primate prefrontal cortex and regulation of behavior by representation memory, in Comprehensive Physiology, Suppl. 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain, Chichester: Wiley, 1997, p. 373.

  45. Rowe, J., Friston, K., Frackowiak, R., and Passingham, R., Attention to action: specific modulation of corticocortical interactions in humans, NeuroImage, 2002, vol. 17, no. 2, p. 988.

    Article  Google Scholar 

  46. Soto, D., Heinke, D., Humphreys, G.W., and Blanco, M.J., Early, top-down guidance of attention from working memory, J. Exp. Psychol. Hum. Percept. Perform., 2005, vol. 31, no. 2, p. 248.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Ministry for Education and Science of Russia order (no. 121032500081-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Slavutskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were carried out with observance of the biometical ethics principles declared under the 1964 Helsinki Declaration and its successive revisions and approved by the local Committee for Bioethics, Biology Faculty of the Lomonosov Moscow State University (Moscow, Russia).

CONFLICT OF INTEREST

The authors declare the absence of apparent and potential conflicts of interest associated with the publication of this article.

INFORMED CONSENT

Each participant in the study gave his/her voluntary informed consent signed by him/her after informing the participant about the nature of the forthcoming study.

Additional information

Translated by N. Tarasyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavutskaya, M.V., Karelin, S.A. & Kotenev, A.V. Negative Components of Visually Evoked Responses in the Saccadic Go/NoGo Paradigm in “Fast” and “Slow” Subjects. Hum Physiol 48, 56–63 (2022). https://doi.org/10.1134/S0362119722010145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722010145

Keywords:

Navigation