Skip to main content
Log in

Attentional orienting and response inhibition: insights from spatial-temporal neuroimaging

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Attentional orienting and response inhibition have largely been studied separately. Each has yielded important findings, but controversy remains concerning whether they share any neurocognitive processes. These conflicting findings may originate from two issues: (1) at the cognitive level, attentional orienting and response inhibition are typically studied in isolation; and (2) at the technological level, a single neuroimaging method is typically used to study these processes. This article reviews recent achievements in both spatial and temporal neuroimaging, emphasizing the relationship between attentional orienting and response inhibition. We suggest that coordinated engagement, both top-down and bottom-up, serves as a common neural mechanism underlying these two cognitive processes. In addition, the right ventrolateral prefrontal cortex may play a major role in their harmonious operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Posner MI, Rothbart MK. Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol 2007, 58: 1–23.

    Article  PubMed  Google Scholar 

  2. Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 2011, 1224: 40–62.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Verbruggen F, Logan GD. Response inhibition in the stopsignal paradigm. Trends Cogn Sci 2008, 12: 418–424.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA. Triangulating a cognitive control network using diffusionweighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 2007, 27: 3743–3752.

    Article  CAS  PubMed  Google Scholar 

  5. Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, O’Reilly RC. A unified framework for inhibitory control. Trends Cogn Sci 2011, 15: 453–459.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002, 3: 201–215.

    Article  CAS  PubMed  Google Scholar 

  7. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 1998, 280: 747–749.

    Article  CAS  PubMed  Google Scholar 

  8. Kiehl KA, Liddle PF, Hopfinger JB. Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 2000, 37: 216–223.

    Article  CAS  PubMed  Google Scholar 

  9. Grinband J, Savitskaya J, Wager TD, Teichert T, Ferrera VP, Hirsch J. Conflict, error likelihood, and RT: Response to Brown & Yeung et al. Neuroimage 2011, 57: 320–322.

    Article  PubMed  Google Scholar 

  10. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004, 8: 170–177.

    Article  PubMed  Google Scholar 

  11. Brass M, Derrfuss J, Forstmann B, von Cramon DY. The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci 2005, 9: 314–316.

    Article  PubMed  Google Scholar 

  12. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000, 12: 1–47.

    Article  CAS  PubMed  Google Scholar 

  13. Duncan J, Owen AM. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 2000, 23: 475–483.

    Article  CAS  PubMed  Google Scholar 

  14. Aron AR. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 2011, 69: e55–68.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Aron AR, Poldrack RA. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 2006, 26: 2424–2433.

    Article  CAS  PubMed  Google Scholar 

  16. Chevrier AD, Noseworthy MD, Schachar R. Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI. Hum Brain Mapp 2007, 28: 1347–1358.

    Article  PubMed  Google Scholar 

  17. Vink M, Kahn RS, Raemaekers M, van den Heuvel M, Boersma M, Ramsey NF. Function of striatum beyond inhibition and execution of motor responses. Hum Brain Mapp 2005, 25: 336–344.

    Article  PubMed  Google Scholar 

  18. Lau HC, Rogers RD, Ramnani N, Passingham RE. Willed action and attention to the selection of action. Neuroimage 2004, 21: 1407–1415.

    Article  CAS  PubMed  Google Scholar 

  19. Thaler D, Chen YC, Nixon PD, Stern CE, Passingham RE. The functions of the medial premotor cortex. I. Simple learned movements. Exp Brain Res 1995, 102: 445–460.

    Article  CAS  PubMed  Google Scholar 

  20. Nachev P. Cognition and medial frontal cortex in health and disease. Curr Opin Neurol 2006, 19: 586–592.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb Cortex 2001, 11: 825–836.

    Article  CAS  PubMed  Google Scholar 

  22. Liddle PF, Kiehl KA, Smith AM. Event-related fMRI study of response inhibition. Hum Brain Mapp 2001, 12: 100–109.

    Article  CAS  PubMed  Google Scholar 

  23. Cunnington R, Windischberger C, Moser E. Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum Mov Sci 2005, 24: 644–656.

    Article  PubMed  Google Scholar 

  24. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 2000, 123(Pt 6): 1216–1228.

    Article  PubMed  Google Scholar 

  25. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997, 23: 437–458.

    Article  CAS  PubMed  Google Scholar 

  26. Rubia K, Smith AB, Brammer MJ, Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 2003, 20: 351–358.

    Article  PubMed  Google Scholar 

  27. Mostofsky SH, Simmonds DJ. Response inhibition and response selection: two sides of the same coin. J Cogn Neurosci 2008, 20: 751–761.

    Article  PubMed  Google Scholar 

  28. Tian Y, Chica AB, Xu P, Yao D. Differential consequences of orienting attention in parallel and serial search: an ERP study. Brain Res 2011, 1391: 81–92.

    Article  CAS  PubMed  Google Scholar 

  29. Tian Y, Yao D. A study on the neural mechanism of inhibition of return by the event-related potential in the Go/NoGo task. Biol Psychol 2008, 79: 171–178.

    Article  PubMed  Google Scholar 

  30. Tian Y, Klein RM, Satel J, Xu P, Yao D. Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm. Brain Topogr 2011, 24: 164–182.

    Article  PubMed  Google Scholar 

  31. Cheal M, Lyon DR. Importance of precue location in directing attention. Acta Psychol (Amst) 1991, 76: 201–211.

    Article  CAS  Google Scholar 

  32. Posner MI. Orienting of attention. Q J Exp Psychol 1980, 32: 3–25.

    Article  CAS  PubMed  Google Scholar 

  33. Chica AB, Bartolomeo P, Valero-Cabre A. Dorsal and ventral parietal contributions to spatial orienting in the human brain. J Neurosci 2011, 31: 8143–8149.

    Article  CAS  PubMed  Google Scholar 

  34. Hopfinger JB, West VM. Interactions between endogenous and exogenous attention on cortical visual processing. Neuroimage 2006, 31: 774–789.

    Article  PubMed  Google Scholar 

  35. Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci 2005, 25: 4593–4604.

    Article  CAS  PubMed  Google Scholar 

  36. Posner MI, Rafal RD, Choate LS, Vaughan J. Inhibition of return: neural basis and function. Cogn Neuropsychol 1985, 2: 211–228.

    Article  Google Scholar 

  37. Berlucchi G. Inhibition of return: A phenomenon in search of a mechanism and a better name. Cogn Neuropsychol 2006, 23: 1065–1074.

    Article  PubMed  Google Scholar 

  38. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron 2008, 58: 306–324.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mayer AR, Dorflinger JM, Rao SM, Seidenberg M. Neural networks underlying endogenous and exogenous visualspatial orienting. Neuroimage 2004, 23: 534–541.

    Article  PubMed  Google Scholar 

  40. Mayer AR, Seidenberg M, Dorflinger JM, Rao SM. An eventrelated fMRI study of exogenous orienting: supporting evidence for the cortical basis of inhibition of return? J Cogn Neurosci 2004, 16: 1262–1271.

    Article  PubMed  Google Scholar 

  41. Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control. Nat Neurosci 2000, 3: 284–291.

    Article  CAS  PubMed  Google Scholar 

  42. Huettel SA, Guzeldere G, McCarthy G. Dissociating the neural mechanisms of visual attention in change detection using functional MRI. J Cogn Neurosci 2001, 13: 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  43. Beck DM, Rees G, Frith CD, Lavie N. Neural correlates of change detection and change blindness. Nat Neurosci 2001, 4: 645–650.

    Article  CAS  PubMed  Google Scholar 

  44. Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage 1999, 9: 269–277.

    Article  CAS  PubMed  Google Scholar 

  45. Lepsien J, Pollmann S. Covert reorienting and inhibition of return: an event-related fMRI study. J Cogn Neurosci 2002, 14: 127–144.

    Article  PubMed  Google Scholar 

  46. Mayer AR, Harrington D, Adair JC, Lee R. The neural networks underlying endogenous auditory covert orienting and reorienting. Neuroimage 2006, 30: 938–949.

    Article  PubMed  Google Scholar 

  47. Rushworth MF, Paus T, Sipila PK. Attention systems and the organization of the human parietal cortex. J Neurosci 2001, 21: 5262–5271.

    CAS  PubMed  Google Scholar 

  48. Shulman GL, Astafiev SV, Franke D, Pope DL, Snyder AZ, McAvoy MP, et al. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J Neurosci 2009, 29: 4392–4407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kirino E, Belger A, Goldman-Rakic P, McCarthy G. Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J Neurosci 2000, 20: 6612–6618.

    CAS  PubMed  Google Scholar 

  50. Marois R, Leung HC, Gore JC. A stimulus-driven approach to object identity and location processing in the human brain. Neuron 2000, 25: 717–728.

    Article  CAS  PubMed  Google Scholar 

  51. Shomstein S. Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control. Front Integr Neurosci 2012, 6: 38.

    Article  PubMed  Google Scholar 

  52. Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 2002, 5: 995–1002.

    Article  CAS  PubMed  Google Scholar 

  53. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 2007, 53: 905–918.

    Article  CAS  PubMed  Google Scholar 

  54. Thiel CM, Zilles K, Fink GR. Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an eventrelated fMRI study. Neuroimage 2004, 21: 318–328.

    Article  PubMed  Google Scholar 

  55. Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci 2003, 3: 17–26.

    Article  PubMed  Google Scholar 

  56. Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 2008, 45: 152–170.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Huster RJ, Westerhausen R, Pantev C, Konrad C. The role of the cingulate cortex as neural generator of the N200 and P300 in a tactile response inhibition task. Hum Brain Mapp 2010, 31: 1260–1271.

    CAS  PubMed  Google Scholar 

  58. Huster RJ, Eichele T, Enriquez-Geppert S, Wollbrink A, Kugel H, Konrad C, et al. Multimodal imaging of functional networks and event-related potentials in performance monitoring. Neuroimage 2011, 56: 1588–1597.

    Article  CAS  PubMed  Google Scholar 

  59. Karch S, Feuerecker R, Leicht G, Meindl T, Hantschk I, Kirsch V, et al. Separating distinct aspects of the voluntary selection between response alternatives: N2- and P3-related BOLD responses. Neuroimage 2010, 51: 356–364.

    Article  PubMed  Google Scholar 

  60. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 2010, 50: 1313–1319.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Sharp DJ, Bonnelle V, De Boissezon X, Beckmann CF, James SG, Patel MC, et al. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci U S A 2010, 107: 6106–6111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends Cogn Sci 2000, 4: 432–440.

    Article  PubMed  Google Scholar 

  63. Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, McNaught E, et al. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol 2007, 98: 3638–3647.

    Article  PubMed  Google Scholar 

  64. Eimer M. Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biol Psychol 1993, 35: 123–138.

    Article  CAS  PubMed  Google Scholar 

  65. Falkenstein M, Hoormann J, Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol (Amst) 1999, 101: 267–291.

    Article  CAS  Google Scholar 

  66. Kopp B, Mattler U, Goertz R, Rist F. N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalogr Clin Neurophysiol 1996, 99: 19–27.

    Article  CAS  PubMed  Google Scholar 

  67. Tekok-Kilic A, Shucard JL, Shucard DW. Stimulus modality and Go/NoGo effects on P3 during parallel visual and auditory continuous performance tasks. Psychophysiology 2001, 38: 578–589.

    Article  CAS  PubMed  Google Scholar 

  68. Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature 1996, 381: 520–522.

    Article  CAS  PubMed  Google Scholar 

  69. Geczy I, Czigler I, Balazs L. Effects of cue information on response production and inhibition measured by eventrelated potentials. Acta Physiol Hung 1999, 86: 37–44.

    CAS  PubMed  Google Scholar 

  70. Bekker EM, Kenemans JL, Verbaten MN. Source analysis of the N2 in a cued Go/NoGo task. Brain Res Cogn Brain Res 2005, 22: 221–231.

    Article  PubMed  Google Scholar 

  71. Jonkman LM, Sniedt FL, Kemner C. Source localization of the Nogo-N2: a developmental study. Clin Neurophysiol 2007, 118: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  72. Van Veen V, Carter CS. The timing of action-monitoring processes in the anterior cingulate cortex. J Cogn Neurosci 2002, 14: 593–602.

    Article  PubMed  Google Scholar 

  73. Lavric A, Pizzagalli DA, Forstmeier S. When ‘go’ and ‘nogo’ are equally frequent: ERP components and cortical tomography. Eur J Neurosci 2004, 20: 2483–2488.

    Article  PubMed  Google Scholar 

  74. Gajewski PD, Stoerig P, Falkenstein M. ERP—correlates of response selection in a response conflict paradigm. Brain Res 2008, 1189: 127–134.

    Article  CAS  PubMed  Google Scholar 

  75. Enriquez-Geppert S, Konrad C, Pantev C, Huster RJ. Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. Neuroimage 2010, 51: 877–887.

    Article  PubMed  Google Scholar 

  76. Klein RM. Inhibition of return. Trends Cogn Sci 2000, 4: 138–147.

    Article  PubMed  Google Scholar 

  77. Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 1996, 4: 1–15.

    Article  CAS  PubMed  Google Scholar 

  78. Di Russo F, Martinez A, Hillyard SA. Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 2003, 13: 486–499.

    Article  PubMed  Google Scholar 

  79. Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 1994, 372: 543–546.

    Article  CAS  PubMed  Google Scholar 

  80. Mangun GR, Hillyard SA. Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 1991, 17: 1057–1074.

    Article  CAS  PubMed  Google Scholar 

  81. Mangun GR, Hopfinger JB, Kussmaul CL, Fletcher EM, Heinze HJ. Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum Brain Mapp 1997, 5: 273–279.

    Article  CAS  PubMed  Google Scholar 

  82. Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 1999, 2: 364–369.

    Article  CAS  PubMed  Google Scholar 

  83. Fu S, Fan S, Chen L, Zhuo Y. The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clin Neurophysiol 2001, 112: 172–185.

    Article  CAS  PubMed  Google Scholar 

  84. McDonald JJ, Ward LM, Kiehl KA. An event-related brain potential study of inhibition of return. Percept Psychophys 1999, 61: 1411–1423.

    Article  CAS  PubMed  Google Scholar 

  85. Prime DJ, Ward LM. Inhibition of return from stimulus to response. Psychol Sci 2004, 15: 272–276.

    Article  PubMed  Google Scholar 

  86. Hopfinger JB, Mangun GR. Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychol Sci 1998, 9: 441–447.

    Article  Google Scholar 

  87. Di Russo F, Spinelli D, Morrone MC. Automatic gain control contrast mechanisms are modulated by attention in humans: evidence from visual evoked potentials. Vision Res 2001, 41: 2435–2447

    Article  PubMed  Google Scholar 

  88. Fu S, Caggiano DM, Greenwood PM, Parasuraman R. Event-related potentials reveal dissociable mechanisms for orienting and focusing visuospatial attention. Brain Res Cogn Brain Res 2005, 23: 341–353.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Donchin E. On why Collet’s doubts regarding the PCA are misplaced. Biol Psychol 1989, 28: 181–186.

    Article  CAS  PubMed  Google Scholar 

  90. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 2007, 118: 2128–2148.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Nieuwenhuis S, Aston-Jones G, Cohen JD. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 2005, 131: 510–532.

    Article  PubMed  Google Scholar 

  92. Verleger R, Jaskowski P, Wascher E. Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 2005, 19: 165–181.

    Article  Google Scholar 

  93. Helenius P, Laasonen M, Hokkanen L, Paetau R, Niemivirta M. Neural correlates of late positivities associated with infrequent visual events and response errors. Neuroimage 2010, 53: 619–628.

    Article  PubMed  Google Scholar 

  94. Hopfinger JB, Mangun GR. Tracking the influence of reflexive attention on sensory and cognitive processing. Cogn Affect Behav Neurosci 2001, 1: 56–65.

    Article  CAS  PubMed  Google Scholar 

  95. Derrfuss J, Brass M, Neumann J, von Cramon DY. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 2005, 25: 22–34.

    Article  PubMed  Google Scholar 

  96. Green JJ, McDonald JJ. Electrical neuroimaging reveals timing of attentional control activity in human brain. PLoS Biol 2008, 6: 730–738.

    Article  CAS  Google Scholar 

  97. Chen Q, Wei P, Zhou X. Distinct neural correlates for resolving stroop conflict at inhibited and noninhibited locations in inhibition of return. J Cogn Neurosci 2006, 18: 1937–1946.

    Article  PubMed  Google Scholar 

  98. Fuentes LJ, Boucart M, Alvarez R, Vivas AB, Zimmerman MA. Inhibitory processing in visuospatial attention in healthy adults and schizophrenic patients. Schizophr Res 1999, 40: 75–80.

    Article  CAS  PubMed  Google Scholar 

  99. Fuentes LJ, Boucart M, Vivas AB, Alvarez R, Zimmerman MA. Inhibitory tagging in inhibition of return is affected in schizophrenia: evidence from the stroop task. Neuropsychology 2000, 14: 134–140.

    Article  CAS  PubMed  Google Scholar 

  100. Vivas AB, Fuentes LJ. Stroop interference is affected in inhibition of return. Psychon Bull Rev 2001, 8: 315–323.

    Article  CAS  PubMed  Google Scholar 

  101. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage 2005, 26: 471–479.

    Article  PubMed  Google Scholar 

  102. Fan J, Kolster R, Ghajar J, Suh M, Knight RT, Sarkar R, et al. Response anticipation and response conflict: an eventrelated potential and functional magnetic resonance imaging study. J Neurosci 2007, 27: 2272–2282.

    Article  CAS  PubMed  Google Scholar 

  103. Cloutman LL, Binney RJ, Drakesmith M, Parker GJ, Lambon Ralph MA. The variation of function across the human insula mirrors its patterns of structural connectivity: evidence from in vivo probabilistic tractography. Neuroimage 2012, 59: 3514–3521.

    Article  PubMed  Google Scholar 

  104. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007, 315: 1860–1862.

    Article  CAS  PubMed  Google Scholar 

  105. Umarova RM, Saur D, Schnell S, Kaller CP, Vry MS, Glauche V, et al. Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 2010, 20: 121–129.

    Article  PubMed  Google Scholar 

  106. Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas 2001, 22: 693–711.

    Article  CAS  PubMed  Google Scholar 

  107. Yao D. Electric potential produced by a dipole in a homogeneous conducting sphere. IEEE Trans Biomed Eng 2000, 47: 964–966.

    Article  CAS  PubMed  Google Scholar 

  108. Foucher JR, Otzenberger H, Gounot D. Where arousal meets attention: a simultaneous fMRI and EEG recording study. Neuroimage 2004, 22: 688–697.

    Article  CAS  PubMed  Google Scholar 

  109. Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A. Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 1997, 8: 3029–3037

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Tian or Dezhong Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Liang, S. & Yao, D. Attentional orienting and response inhibition: insights from spatial-temporal neuroimaging. Neurosci. Bull. 30, 141–152 (2014). https://doi.org/10.1007/s12264-013-1372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1372-5

Keywords

Navigation