Skip to main content
Log in

Neurorehabilitation with the Use of an Arm Exoskeleton Controlled via Brain–Computer Interface: Implemented Interdisciplinary Project

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The paper outlines the interdisciplinary project on designing and applying in the process of neurorehabilitation with the use of arm exoskeleton controlled via brain–computer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nudo, R.J., Milliken, G.W., Jenkins, W.M., and Merzenich, M.M., Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys, J. Neurosci., 1996, vol. 16, no. 2, pp. 785–807.

    Article  CAS  Google Scholar 

  2. Bach-Y-Rita, P., Theoretical and practical considerations in the restoration of function after stroke, Top. Stroke Rehab., 2001, vol. 8, no. 3, pp. 1–15.

    Article  CAS  Google Scholar 

  3. Taub, E., Uswatte, G., and Elbert, T., New treatments in neurorehabilitation founded on basic research, Nat. Rev. Neurosci., 2002, vol. 3, no. 3, pp. 228–236.

    Article  CAS  Google Scholar 

  4. Sharma, N., Pomeroy, V.M., and Baron, J.C., Motor imagery: a backdoor to the motor system after stroke? Stroke, 2006, vol. 37, pp. 1941–1952.

    Article  Google Scholar 

  5. Millàn, J.d.R., Rupp, R., Müller-Putz, G.R., et al., Combining brain–computer interfaces and assistive technologies: state-of the-art and challenges, Front. Neurosci., 2010, vol. 4, p. 161.

    PubMed  PubMed Central  Google Scholar 

  6. Pfurtscheller, G. and Lopes da Silva, F.N., Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin. Neurophysiol., 1999, vol. 110, no. 11, pp. 1842–1845.

    Article  CAS  Google Scholar 

  7. Pfurtscheller, G., EEG event-related desynchronization (ERD) and event related synchronization (ERS), in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, Niedermeyer, E. and Lopes da Silva, F.H., Eds., 4th ed., Baltimore, MD: Williams and Wilkins, 1999, pp. 958–967.

    Google Scholar 

  8. Jeannerod, M., Neural simulation of action: a unifying mechanism for motor cognition, NeuroImage, 2001, vol. 14, pp. 103–109.

    Article  Google Scholar 

  9. Jeannerod, M. and Frak, V., Mental imaging of motor activity in humans, Curr. Opin. Neurobiol., 1999, vol. 9, pp. 735–739.

    Article  CAS  Google Scholar 

  10. Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G., Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG, Cognit. Brain Res., 2005, vol. 25, no. 3, pp. 668–677.

    Article  Google Scholar 

  11. Bloom, F.E., Lazerson, A., and Hofstadter, L., Brain, Mind, and Behavior, New York: W.H. Freeman, 1985.

    Google Scholar 

  12. Bobrov, P., Frolov, A., Cantor, C., et al., Brain-computer interface based on generation of visual images, PLoS One, 2011, vol. 6, no. 6, p. e20674.

    Article  CAS  Google Scholar 

  13. Machado, S., Araùjo, F., Paes, F., et al., EEG-base brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation, Rev. Neurosci., 2010, vol. 21, pp. 451–468.

    Article  Google Scholar 

  14. Lotze, M., Braun, C., Birbaumer, N., Anders, S., and Cohen, L.G., Motor learning elicited by voluntary drive, Brain, 2003, vol. 126, pp. 866–872.

    Article  Google Scholar 

  15. Jackson, P.L., Doyon, J., Richards, C.L., and Malouin, F., The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report, Neurorehabil. Neural Repair., 2004. V.18, pp. 106–111.

    Article  Google Scholar 

  16. Kachenoura, A., Albera, L., Senhadji, L., and Comon, P., ICA: a potential tool for BCI systems, IEEE Signal Process. Mag., 2008, vol. 25, no. 1, pp. 57–68.

    Article  Google Scholar 

  17. Delorme, A. and Makeig, S., EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics, J. Neurosci. Methods, 2004, vol. 134, pp. 9–21.

    Article  Google Scholar 

  18. Hyvärinen, A., Karhunen, J., and Oje, E., Independent Component Analysis, New York: Wiley, 2001.

    Book  Google Scholar 

  19. Frolov, A., Husek, D., Bobrov, P., et al., Sources of EEG activity the most relevant to performance of brain-computer interface based on motor imagery, Neural Network World, 2012, vol. 22, no. 1, pp. 21–37.

    Article  Google Scholar 

  20. Frolov, A.A., Bobrov, P.D., Biryukova, E.V., et al., Electrical, hemodynamic and motor activities in post-stroke rehabilitation provided by the hand exoskeleton under control of brain-computer interface: clinical case study, Front. Neurol., 2018, vol. 9, pp. 1135.

    Article  Google Scholar 

  21. Frolov, A.A., Husek, D., Silchenko, A.V., et al., The changes in the hemodynamic activity of the brain during motor imagery training with the use of brain-computer interface, Hum. Physiol., 2016, vol. 42, no. 1, pp. 1–12.

    Article  Google Scholar 

  22. Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., et al., fMRI-EEG assessment of cerebral reactivity to motor tasks in patients with brain tumor, Hum. Physiol., 2010, vol. 36, no. 5, pp. 550–559.

    Article  Google Scholar 

  23. Bernshtein, N.A., Klinicheskie puti sovremennoi biomekhaniki (Clinical Pathways of Modern Biomechanics), Kazan, 1929, pp. 249–270.

    Google Scholar 

  24. Biryukova, E.V., Pavlova, O.G., Kurganskaya, M.E., et al., Recovery of the motor function of the arm with the aid of a hand exoskeleton controlled by a brain–computer interface in a patient with an extensive brain lesion, Hum. Physiol., 2016, vol. 42, no. 1, pp. 13–23.

    Article  Google Scholar 

  25. Kondur, A.A., Biryukova, E.V., Kotov, S.V., et al., Kinematics of a patient as an objective indicator of the motor function during neurorehabilitation using a hand exoskeleton controlled by a brain-computer interface, Uch. Zap. S.-Peterb. Gos. Med. Univ. im. I.P. Pavlova, 2016, vol. 23, no. 3, pp. 28–31.

    Google Scholar 

  26. Kondur, A.A., The effectiveness of using a neurointerface in restoring the motor function of the hand after a stroke, Cand. Sci. (Med.) Dissertation, Moscow, 2017.

  27. Kondur, A.A., Biryukova, E.V., Frolov, A.A., et al., Rehabilitation of the arm motor function in poststroke patients with an exoskeleton-controlling brain–computer interface: effect of repeated hospitalizations, Hum. Physiol., 2020, vol. 46, no. 3, pp. 321–331.

    Article  Google Scholar 

  28. Frolov, A.A., Mokienko, O.A., Lyukmanov, R.Kh., et al., Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial, Front. Neurosci., 2017, vol. 11, pp. 400.

    Article  Google Scholar 

  29. Kotov, S.V., Turbina, L.G., Biryukova, E.V., et al., Rehabilitation potential of post-stroke patients training for kinesthetic movement imagination: motor and cognitive aspects, Hum. Physiol., 2017, vol. 43, no. 5, pp. 532–541.

    Article  Google Scholar 

  30. Ang, K.K., Guan, C., Phua, K.S., et al., Brain-computer interface based robotic and effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke, Front. Neuroeng., 2014, vol. 7, no. 30, pp. 30.

    Article  Google Scholar 

  31. Ang, K.K., Chua, K.S., Phua, K.S., et al., A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke, Clin. EEG Neurosci., 2015, vol. 46, no. 4, pp. 310–320.

    Article  Google Scholar 

  32. Ramos-Murguialday, A., Broetz, D., Rea, M., et al., Brain-machine interface in chronic stroke rehabilitation: a controlled study, Ann. Neurol., 2013, vol. 74, no. 1, pp. 100–108.

    Article  Google Scholar 

  33. Ono, T., Shindo, K., Kawashima, K., et al., Brain-computerinterface with somatosensory feedback improvesfunctional recovery from severe hemiplegia due tochronic stroke, Front. Neuroeng., 2014, vol. 7, pp. 19.

    Article  Google Scholar 

  34. Ivanova, G.E., Bushkova, Yu.V., Suvorov, A.Yu., et al., Use of a BCI-exoskeleton simulator with multichannel biofeedback in a multidisciplinary rehabilitation program in poststroke patients, Neurosci. Behav. Physiol., 2018, vol. 48, no. 9, pp. 1100–1105.

    Article  Google Scholar 

  35. Mokienko, O.A., Lyukmanov, R.Kh., Cherniko-va, L.A., et al., Brain–computer interface: the first experience of clinical use in Russia, Hum. Physiol., 2016, vol. 42, no. 1, pp. 24–31.

    Article  Google Scholar 

  36. Bernshtein, N.A., The construction of movements, in Fiziologiya dvizhenii i aktivnost’ (Physiology of movements and activity), Feigenberg, I.M. and Gazenko, O.G., Ed., Moscow: Nauka, 1990, pp. 11–244.

  37. Leont’ev, A.N. and Zaporozhets, A.V., Vosstanovlenie dvizheniya (Rocovery of Moveement), Moscow, 1945.

  38. Bernshtein, N.A., O lovkosti i ee razvitii (About Agility and Its Development), Moscow, 1945.

    Google Scholar 

  39. Frolov, A.A., Kozlovskaya, I.B., Biryukova, E.V., and Bobrov, P.D., Use of robotic devices in post-stroke rehabilitation, Neurosci. Behav. Physiol., 2018, vol. 48, no. 6, pp. 1053–1066.

    Article  Google Scholar 

  40. Alexandrov, A.V., Frolov, A.A., Horak, F.B., et al., Feedback equilibrium control during human standing, Biol. Cybern., 2005, vol. 93, no. 5, pp. 309–322.

    Article  CAS  Google Scholar 

  41. Alexandrov, A.V. and Frolov, A.A., Closed-loop and open-loop control of posture and movement during human upper trunk bending, Biol. Cybern., 2011, vol. 104, no. 6, pp. 425–438.

    Article  CAS  Google Scholar 

  42. Frolov, A.A., Prokopenko, R.A., Dufossè, M., and Ouezdou, F.B., Adjustment of the human arm viscoelastic properties to the direction of reaching, Biol. C-ybern., 2011, vol. 94, no. 2, pp. 97–109.

    Article  Google Scholar 

  43. Frolov, A.A., Dufossè, M., Rizek, S., and Kaladjan, A., On the possibility of linear modeling of the human arm neuromuscular apparatus, Biol. Cybern., 2000, vol. 82, no. 6, pp. 499–515.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Biryukova or P. D. Bobrov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

CONFLICT OF INTEREST

The authors declare no obvious and potential conflicts of interest related to the publication of this article.

INFORMED CONSENT

Each study participant provided a voluntary written informed consent signed after explanation of the potential risks and benefits, as well as the nature of the upcoming study.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biryukova, E.V., Bobrov, P.D. Neurorehabilitation with the Use of an Arm Exoskeleton Controlled via Brain–Computer Interface: Implemented Interdisciplinary Project. Hum Physiol 47, 709–715 (2021). https://doi.org/10.1134/S036211972107001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972107001X

Keywords:

Navigation