Skip to main content
Log in

Asymmetric Performance during Discrimination of Sound Motion Directions in Dichotic Stimulation Conditions

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The study focused on the left–right asymmetry in discriminating moving sound stimuli in dichotic conditions. Healthy adult right-handed participants discriminated the left and right directions of sound motion. A sound stimulus consisted of two parts, a stationary sound at the head midline was followed by a moving sound of a variable duration, which shifted leftward or rightward from the midline. Seven velocities of motion (from 80 to 480 deg/s) were produced by linear changes of interaural time differences (ITDs). The shift was varied from well distinguishable to vanishing values, and the duration of the moving part was decreased in proportion. Hit rates and mean reaction times were measured separately in each of the conditions. As the task complexity increased due to decreasing sound shifts in shorter time, the percentage of rightward responses became higher than that of leftward responses. However, the total amount of leftward responses contained a larger portion of hits. This asymmetry in performance showed no correlation with the consistency of hand preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kimura, D., Cerebral dominance and the perception of verbal stimuli, Can. J. Psychol., 1961, vol. 15, p. 166.

    Article  Google Scholar 

  2. Tervaniemi, M. and Hugdahl, K., Lateralization of auditory-cortex functions, Brain Res. Rev., 2003, vol. 43, no. 3, p. 231.

    Article  PubMed  Google Scholar 

  3. Špajdel, M., Jariabková, K., and Riečanský, I., The influence of musical experience on lateralisation of auditory processing, Laterality, 2007, vol. 12, no. 6, p. 487.

    Article  PubMed  Google Scholar 

  4. Hugdahl, K., Information processing in the cerebral hemispheres, in The Two Halves of the Brain, Hugdahl, K. and Westerhausen, R., Eds., Cambridge. MA: MIT Press, 2010, p. 694.

    Book  Google Scholar 

  5. Brancucci, A., D’Anselmo, A., Martello, F., and Tommasi, L., Left hemisphere specialization for duration discrimination of musical and speech sounds, Neuropsychologia, 2008, vol. 46, no. 7, p. 2013.

    Article  PubMed  Google Scholar 

  6. Kimura, D., Left-right differences in the perception of melodies, Q. J. Exp. Psychol., 1964, vol. 16, p. 355.

    Article  Google Scholar 

  7. Hugdahl, K., Bronnick, K., Kyllingsbaek, S., et al., Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study, Neuropsychologia, 1999, vol. 37, no. 4, p. 431.

    Article  CAS  PubMed  Google Scholar 

  8. Mead, L.A. and Hampson, E., Asymmetric effects of ovarian hormones on hemispheric activity: Evidence from dichotic and tachistoscopic tests, Neuropsychology, 1996, vol. 10, no. 4, p. 578.

    Article  Google Scholar 

  9. Zatorre, R.J., Evans, A.C., Meyer, E., and Gjedde, A., Lateralization of phonetic and pitch discrimination in speech processing, Science, 1992, vol. 256, no. 5058, p. 846.

    Article  CAS  PubMed  Google Scholar 

  10. Brancucci, A., Babiloni, C., Rossini, P.M., and Romani, G.L., Right hemisphere specialization for intensity discrimination of musical and speech sounds, Neuropsychologia, 2005, vol. 43, no. 13, p. 1916.

    Article  PubMed  Google Scholar 

  11. Zatorre, R.J., Belin, P., and Penhune, V.B., Structure and function of auditory cortex: music and speech, Trends Cognit. Sci., 2002, vol. 6, no. 1, p. 37.

    Article  Google Scholar 

  12. Zatorre, R.J., Sound analysis in auditory cortex, Trends Neurosci., 2003, vol. 26, no. 5, p. 229.

    Article  CAS  PubMed  Google Scholar 

  13. Hickok, G. and Poeppel, D., The cortical organization of speech processing, Nat. Rev. Neurosci., 2007, vol. 8, no. 85, p. 393.

    Article  CAS  PubMed  Google Scholar 

  14. Tallal, P. and Gaab, N., Dynamic auditory processing, musical experience and language development, Trends Neurosci., 2006, vol. 7, no. 29, p. 382.

    Article  Google Scholar 

  15. Vaitulevich, S.F., Petropavlovskaya, E.A., Shestopalova, L.B., and Nikitin, N.I., Functional interhemispheric asymmetry of human brain and audition, Hum. Physiol., 2019, vol. 45, no. 2, p. 202.

    Article  Google Scholar 

  16. Al’tman, Ya.A., Prostranstvennyi slukh (Spatial Hearing), St. Petersburg: Inst. Fiziol. im. I.P. Pavlova, Ross. Akad. Nauk, 2011.

  17. Feinstein, S., The accuracy of diver sound localization by pointing, Undersea Biomed. Res., 1975, vol. 2, no. 3, p. 173.

    CAS  PubMed  Google Scholar 

  18. Wells, M.J. and Ross, H.E., Distortion and adaptation in underwater sound localization, Aviat. Space Environ. Med., 1980, vol. 51, p. 767.

    CAS  PubMed  Google Scholar 

  19. Burke, K.A., Letsos, A., and Butler, R.A., Asymmetric performances in binaural localization of sound in space, Neuropsychology, 1994, vol. 32, no. 11, p. 1409.

    Article  CAS  Google Scholar 

  20. Abel, S.M., Giguère, C., Consoli, A., and Papsin, B.C., Front/back mirror image reversal errors and left/right asymmetry in sound localization, Acustica, 1999, vol. 85, p. 378.

    Google Scholar 

  21. Abel, S.M., Giguère, C., Consoli, A., and Pap-sin, B.C., The effect of aging on horizontal plane sound localization, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, p. 743.

    Article  CAS  PubMed  Google Scholar 

  22. Voss, P., Lassonde, M., Gougoux, F., et al., Early and late-onset blind individuals show supra-normal auditory abilities in far space, Curr. Biol., 2004, vol. 14, no. 19, p. 1734.

    Article  CAS  PubMed  Google Scholar 

  23. Savel, S., Individual differences and left/right asymmetries in auditory space perception. I. Localization of low-frequency sounds in free field, Hear. Res., 2009, vol. 255, nos. 1–2, p. 142.

    Article  PubMed  Google Scholar 

  24. Grantham, D.W., Detection and discrimination of simulated motion of auditory targets in the horizontal plane, J. Acoust. Soc. Am., 1986, vol. 79, no. 6, p. 1939.

    Article  CAS  PubMed  Google Scholar 

  25. Chandler, D.W. and Grantham, D.W., Minimum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, source azimuth, and velocity, J. Acoust. Soc. Am., 1992, vol. 91, no. 3, p. 1624.

    Article  CAS  PubMed  Google Scholar 

  26. Perrott, D.R. and Musicant, A.D., Minimum audible movement angle: binaural localization moving sound, J. Acoust. Soc. Am., 1977, vol. 62, no. 6, p. 1463.

    Article  CAS  PubMed  Google Scholar 

  27. Perrott, D.R. and Tucker, J., Minimum audible movement angle as a function of signal frequency and the velocity of the source, J. Acoust. Soc. Am., 1988, vol. 83, no. 4, p. 1522.

    Article  CAS  PubMed  Google Scholar 

  28. Carlile, S. and Leung, J., The perception of auditory motion, Trends Hear., 2016, vol. 20, p. 1. https://doi.org/10.1177/2331216516644254

    Article  Google Scholar 

  29. Lewald, J., Gender-specific hemispheric asymmetry in auditory space perception, Cognit. Brain Res., 2004, vol. 19, p. 92.

    Article  Google Scholar 

  30. Dobrokhotova, T.A. and Bragina, N.N., Levshi (Left-Handed People), Moscow: Kniga, 1994.

    Google Scholar 

  31. Altman, J.A., Vaitulevich, S.Ph., Petropavlovskaya, E.A., and Shestopalova, L.B., Discrimination of the dynamic properties of sound source spatial location in humans: electrophysiology and psychophysics, Hum. Physiol., 2010, vol. 36, no. 1, p. 72.

    Article  Google Scholar 

  32. Altman, J.A., Vaitulevich, S.Ph., Shestopalova, L.B., and Petropavlovskaia, E.A., How does mismatch negativity reflect auditory motion? Hear. Res., 2010, vol. 268, nos. 1–2, p. 194.

    Article  CAS  PubMed  Google Scholar 

  33. Petropavlovskaya, E.A., Shestopalova, L.B., and Vaitulevich, S.F., Predictive ability of the auditory system during smooth and abrupt movements of low-intensity sound images, Neurosci. Behav. Physiol., 2012, vol. 42, no. 8, p. 911.

    Article  Google Scholar 

  34. Semenova, V.V., Petropavlovskaia, E.A., Shestopalova, L.B., and Nikitin, N.I., The constants of delayed perception of audiostimuls, Usp. Fiziol. Nauk, 2020, vol. 51, no. 2, p. 55.

    Google Scholar 

  35. Ivarsson, C., De Ribaupierre, Y., and De Ribaupierre, F., Functional ear asymmetry in vertical localization, Hear. Res., 1980, vol. 3, p. 241.

    Article  CAS  PubMed  Google Scholar 

  36. Butler, R.A., Asymmetric performances in monaural localization of sound in space, Neuropsychologia, 1994, vol. 32, no. 2, p. 221.

    Article  CAS  PubMed  Google Scholar 

  37. Giguère, C. and Vaillancourt, V., Vertical sound localization in left, median and right lateral planes, Can. Acoust., 2011, vol. 39, no. 4, p. 3.

    Google Scholar 

  38. Duhamel, J.-R., Pinek, B., and Brouchon, M., Manual pointing to auditory targets: performances of right versus left handed subjects, Cortex, 1986, vol. 22, p. 633.

    Article  CAS  PubMed  Google Scholar 

  39. Mondor, T.A. and Bryden, M.P., On the relation between auditory spatial attention and auditory perceptual asymmetries, Percept. Psychophys., 1992, vol. 52, no. 4, p. 393.

    Article  CAS  PubMed  Google Scholar 

  40. Kimura, D., Functional asymmetry of the brain in dichotic listening, Cortex, 1967, vol. 3, p. 163.

    Article  Google Scholar 

  41. Bryden, M.P., An overview of the dichotic listening procedure and its relation to cerebral organization, in Handbook of Dichotic Listening, Hugdahl K., Ed., Chichester: Wiley, 1988, p. 1.

    Google Scholar 

  42. Kinsbourne, M., The cerebral basis of lateral asymmetries in attention, Acta Psychol., 1970, vol. 33, p. 193.

    Article  CAS  Google Scholar 

  43. Kinsbourne, M., The mechanism of hemispheric control over the lateral gradient of attention, in Attention and Performance, Rabbitt P.M.A. and Domic S., Eds., London: Academic, 1975, p. 81.

    Google Scholar 

  44. Kinsbourne, M., Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace, in Unilateral Neglect: Clinical and Experimental Studies, Robertson, I.H. and Marshall, J.C., Eds., Hillsdale, NJ: Erlbaum, 1993.

    Google Scholar 

  45. Asbjørnsen, A.E. and Hugdahl, K., Attentional effects in dichotic listening, Brain Lang., 1995, vol. 49, no. 3, p. 189.

    Article  PubMed  Google Scholar 

  46. Jäncke, L., Specht, K., Shah, J.N., and Hugdahl, K., Focused attention in a simple dichotic listening task: an fMRI experiment, Brain Res. Cognit. Brain Res., 2003, vol. 16, no. 2, p. 257.

    Article  Google Scholar 

  47. Thomsen, T., Rimol, L.M., Ersland, L., and Hugdahl, K., Dichotic listening reveals functional specificity in prefrontal cortex: an fMRI study, NeuroImage, 2004, vol. 21, no. 1, p. 211.

    Article  PubMed  Google Scholar 

  48. Mildner, V., Stanković, D., and Petković, M., The relationship between active hand and ear advantage in the native and foreign language, Brain Cognit., 2005, vol. 57, no. 2, p. 158.

    Article  Google Scholar 

  49. Cazzoli, D. and Chechlacz, M., A matter of hand: causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioral responses to transcranial magnetic stimulation, Cortex, 2017, vol. 86, p. 230.

    Article  PubMed  Google Scholar 

  50. Kourtis, D. and Vingerhoets, G., Evidence for dissociable effects of handedness and consistency of hand preference in allocation of attention and movement planning: an EEG investigation, Neuropsychologia, 2016, vol. 93, p. 493.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-315-90 016) and the Program of Basic Research at the State Academies (project no. GP-14, section 63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Semenova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study was carried out in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and was approved by the Ethics Committee at St. Petersburg State University (St. Petersburg). All individual participants involved in the study voluntarily signed the informed consent document after being informed about the potential risks and benefits and the nature of the study.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, V.V., Petropavlovskaia, E.A., Shestopalova, L.B. et al. Asymmetric Performance during Discrimination of Sound Motion Directions in Dichotic Stimulation Conditions. Hum Physiol 47, 506–515 (2021). https://doi.org/10.1134/S036211972105011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972105011X

Keywords:

Navigation