Skip to main content
Log in

Cognitive Motor Rehabilitation: Imagination and Observation of Motor Actions

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Motor rehabilitation can be considered as a learning process in which lost skills should be restored, and new ones should be acquired on the basis of physical training. But is exercise always necessary to achieve these goals? Many authors have shown that motor imagery and observation lead to the activation of the same brain areas as their physical counterparts, and that they can cause the same plastic changes in the motor system as real physical training. The review presents data on the use of motor imagery and observation as a substitute for physical action in motor rehabilitation, on the community of their neural substrates, as well as on the behavioral and neurophysiological use of these methods in healthy people and in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mulder, T., Motor imagery and action observation: cognitive tools for rehabilitation, J. Neural. Transm., 2007, vol. 114, no. 10, p. 1265.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jeannerod, M., Neural simulation of action: a unifying mechanism for motor cognition, NeuroImage, 2001, vol. 14, p. S103.

    Article  CAS  PubMed  Google Scholar 

  3. Bisio, A., Bassolino, M., Pozzo, T., and Wenderoth, N., Boosting action observation and motor imagery to promote plasticity and learning, Neural Plast., 2018, vol. 2018, art. ID 8625861.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mokienko, O.A., Chernikova, L.A., Frolov, A.A., and Bobrov, P.D., Motor imagery and its practical application, Neurosci. Behav. Physiol., 2014, vol. 44, no. 5, p. 483.

    Article  Google Scholar 

  5. Mokienko, O.A., Lyukmanov, R.Kh., Chernikova, L.A., et al., Brain–computer interface: the first experience of clinical use in Russia, Hum. Physiol., 2016, vol. 42, no. 1, p. 24.

    Article  Google Scholar 

  6. Frolov, A.A., Fedotova, I.R., Gusek, D., and Bobrov, P.D., Rhythmic brain activity and brain computer interface based on motor imagery, Usp. Fiziol. Nauk, 2017, vol. 48, no. 3, p. 72.

    Google Scholar 

  7. Bobrova, E.V., Reshetnikova, V.V., Frolov, A.A., and Gerasimenko, Yu.P., Use of imaginary lower limb movements to control brain–computer interface systems, Neurosci. Behav. Physiol., 2020, vol. 50, no. 3, p. 585.

    Article  Google Scholar 

  8. Svishchev, I.D., The functioning of mirror neurons in the brain during learning the motor actions of the judaist, Ekstremal’naya Deyat. Chel., 2019, no. 1, p. 38.

  9. Filimon, F., Rieth, C.A., Sereno, M.I., and Cottrell, G.W., Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas, Cereb. Cortex, 2015, vol. 25, no. 9, p. 3144.

    Article  PubMed  Google Scholar 

  10. Simos, P.G., Kavroulakis, E., Maris, T., et al., Neural foundations of overt and covert actions, NeuroImage, 2017, vol. 152, p. 482.

    Article  PubMed  Google Scholar 

  11. Di Rienzo, F., Debarnot, U., Daligault, S., et al., Online and offline performance gains following motor imagery practice: a comprehensive review of behavioral and neuroimaging studies, Front. Hum. Neurosci., 2016, vol. 10, p. 315.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaplan, A.Ya., Neurophysiological foundations and practical realizations of the brain–machine interfaces in the technology in neurological rehabilitation, Hum. Physiol., 2016, vol. 42, no. 1, p. 103.

    Article  Google Scholar 

  13. Boulton, H. and Mitra, S., Incomplete inhibition of central postural commands during manual motor imagery, Brain Res., 2015, vol. 1624, p. 321.

    Article  CAS  PubMed  Google Scholar 

  14. Malouin, F., Jackson, P.L., and Richards, C.L., Towards the integration of mental practice in rehabilitation programs. A critical review, Front. Hum. Neurosci., 2013, vol. 7, p. 576.

    Article  PubMed  PubMed Central  Google Scholar 

  15. García Carrasco, D. and Aboitiz Cantalapiedra, J., Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review, Neurology, 2016, vol. 31, no. 1, p. 43.

    Google Scholar 

  16. Gentili, R. and Papaxanthis, C., Laterality effects in motor learning by mental practice in right-handers, Neuroscience, 2015, vol. 297, p. 231.

    Article  CAS  PubMed  Google Scholar 

  17. Sobierajewicz, J., Przekoracka-Krawczyk, A., Jaśkowski, W., et al., The influence of motor imagery on the learning of a fine hand motor skill, Exp. Brain Res., 2017, vol. 235, no. 1, p. 305.

    Article  PubMed  Google Scholar 

  18. Di Rienzo, F., Collet, C., Hoyek, N., and Guillot, A., Impact of neurologic deficits on motor imagery: a systematic review of clinical evaluations, Neuropsychol. Rev., 2014, vol. 24, no. 2, p. 116.

    Article  PubMed  Google Scholar 

  19. Mateo, S., Di Rienzo, F., Reilly, K., et al., Improvement of grasping after motor imagery in C6–C7 tetraplegia: a kinematic and MEG pilot study, Restor. Neurol. Neurosci., 2015, vol. 33, no. 4, p. 543.

    PubMed  Google Scholar 

  20. Caligiore, D., Mustile, M., Spalletta, G., and Baldassarre, G., Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis, Neurosci. Biobehav. Rev., 2017, vol. 72, p. 210.

    Article  PubMed  Google Scholar 

  21. Beyaert, C., Vasa, R., and Frykberg, G.E., Gait post-stroke: pathophysiology and rehabilitation strategies, Neurophysiol. Clin., 2015, vol. 45, nos. 4–5, p. 335.

    Article  CAS  PubMed  Google Scholar 

  22. Morawietz, C. and Moffat, F., Effects of locomotor training after incomplete spinal cord injury: a systematic review, Arch. Phys. Med. Rehabil., 2013, vol. 94, no. 11, p. 2297.

    Article  PubMed  Google Scholar 

  23. Mateo, S., Di Rienzo, F., Bergeron, V., et al., Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury, Front. Behav. Neurosci., 2015, vol. 9, p. 234.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pelletier, R., Higgins, J., and Bourbonnais, D., Addressing neuroplastic changes in distributed areas of the nervous system associated with chronic musculoskeletal disorders, Phys. Ther., 2015, vol. 95, no. 11, p. 1582.

    Article  PubMed  Google Scholar 

  25. Ruffino, C., Papaxanthis, C., and Lebon, F., Neural plasticity during motor learning with motor imagery practice: review and perspectives, Neuroscience, 2017, vol. 341, p. 61.

    Article  CAS  PubMed  Google Scholar 

  26. MacIver, K., Lloyd, D.M., Kelly, S., et al., Phantomlimb pain, cortical reorganization and the therapeutic effect of mental imagery, Brain, 2008, vol. 131, no. 8, p. 2181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Rienzo, F., Guillot, A., Mateo, S., et al., Neuroplasticity of prehensile neural networks after quadriplegia, Neuroscience, 2014, vol. 274, p. 82.

    Article  CAS  PubMed  Google Scholar 

  28. Molina, M., Tijus, C., and Jouen, F., The emergence of motor imagery in children, J. Exp. Child Psychol., 2008, vol. 99, no. 3, p. 196.

    Article  PubMed  Google Scholar 

  29. Spruijt, S., van der Kamp, J., and Steenbergen, B., Current insights in the development of children’s motor imagery ability, Front. Psychol., 2015, vol. 6, p. 787.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kalicinski, M., Kempe, M., and Bock, O., Motor imagery: effects of age, task complexity, and task setting, Exp. Aging Res., 2015, vol. 41, no. 1, p. 25.

    Article  PubMed  Google Scholar 

  31. van der Meulen, M., Allali, G., Rieger, S.W., et al., The influence of individual motor imagery ability on cerebral recruitment during gait imagery, Hum. Brain Mapp., 2014, vol. 35, no. 2, p. 455.

    Article  PubMed  Google Scholar 

  32. Malouin, F., Richards, C.L., Durand, A., et al., Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness, Neurorehabil. Neural Repair, 2009, vol. 23, no. 5, p. 449.

    Article  PubMed  Google Scholar 

  33. Debarnot, U., Sperduti, M., Di Rienzo, F., and Guillot, A., Experts bodies, experts’ minds: How physical and mental training shape the brain, Front. Hum. Neurosci., 2014, vol. 8, p. 280.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guillot, A., Di Rienzo, F., Macintyre, T., et al., Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition, Front. Hum. Neurosci., 2012, vol. 6, art. ID 247.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harris, J.E. and Hebert, A., Utilization of motor imagery in upper limb rehabilitation: a systematic scoping review, Clin. Rehabil., 2015, vol. 29, no. 11, p. 1092.

    Article  CAS  PubMed  Google Scholar 

  36. Eaves, D.L., Riach, M., Holmes, P.S., and Wright, D.J., Motor imagery during action observation: a brief review of evidence, theory and future research opportunities, Front. Neurosci., 2016, vol. 10, p. 514.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stins, J.F., Schneider, I.K., Koole, S.L., and Beek, P.J., The influence of motor imagery on postural sway: differential effects of type of body movement and person perspective, Adv. Cognit. Psychol., 2015, vol. 11, no. 3, p. 77.

    Article  Google Scholar 

  38. Collet, C., Di Rienzo, F., El Hoyek, N., and Guillot, A., Autonomic nervous system correlates in movement observation and motor imagery, Front. Hum. Neurosci., 2013, vol. 7, art. ID 415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bunno, Y., Suzuki, T., and Iwatsuki, H., Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity, J. Phys. Ther. Sci., 2015, vol. 27, no. 12, p. 3793.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takemi, M., Masakado, Y., Liu, M., and Ushiba, J., Sensorimotor event-related desynchronization represents the excitability of human spinal motoneurons, Neuroscience, 2015, vol. 297, p. 58.

    Article  CAS  PubMed  Google Scholar 

  41. Williams, J., Pearce, A., Loporto, M., et al., The relationship between corticospinal excitability during motor imagery and motor imagery ability, Behav. Brain Res., 2012, vol. 226, no. 2, p. 369.

    Article  PubMed  Google Scholar 

  42. Bock, O., Schott, N., Papaxanthis, C., Motor imagery: lessons learned in movement science might be applicable for spaceflight, Front. Syst. Neurosci., 2015, vol. 9, art. ID 75.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kumar, V.K., Chakrapani, M., and Kedambadi, R., Motor imagery training on muscle strength and gait performance in ambulant stroke subjects: a randomized clinical trial, J. Clin. Diagn. Res., 2016, vol. 10, no. 3, p. YC01.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grosprêtre, S., Lebon, F., Papaxanthis, C., and Martin, A., New evidence of corticospinal network modulation induced by motor imagery, J. Neurophysiol., 2016, vol. 115, no. 3, p. 1279.

    Article  PubMed  Google Scholar 

  45. Takemi, M., Masakado, Y., Liu, M., and Ushiba, J., Event-related desynchronization reflects down-regulation of intracortical inhibition in human primary motor cortex, J. Neurophysiol., 2013, vol. 110, no. 5, p. 1158.

    Article  PubMed  Google Scholar 

  46. Cattaneo, L. and Rizzolatti, G., The mirror neuron system, Arch. Neurol., 2009, vol. 66, no. 5, p. 557.

    Article  PubMed  Google Scholar 

  47. Lebedeva, N.N., Zufman, A.I., and Mal’tsev, V.Yu., Mirror neuron system as a key to learning, personality formation and understanding of another’s mind, Usp. Fiziol. Nauk, 2017, vol. 48, no. 4, p. 16.

    Google Scholar 

  48. Bazyan, A.S., Mirror neurons, psychological role, features of functioning and emotionally saturated cognitive map of the brain, Usp. Fiziol. Nauk, 2019, vol. 50, no. 2, p. 42.

    Google Scholar 

  49. Rizzolatti, G. and Craighero, L., The mirror-neuron system, Annu. Rev. Neurosci., 2004, vol. 27, no. 1, p. 169.

    Article  CAS  PubMed  Google Scholar 

  50. Mukamel, R., Ekstrom, A.D., Kaplan, J., et al., Single-neuron responses in humans during execution and observation of actions, Curr. Biol., 2010, vol. 20, no. 8, p. 750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Naish, K.R., Houston-Price, C., Bremner, A.J., and Holmes, N.P., Effects of action observation on corticospinal excitability: muscle specificity, direction, and timing of the mirror response, Neuropsychology, 2014, vol. 64, p. 331.

    Article  Google Scholar 

  52. Barchiesi, G. and Cattaneo, L., Motor performance, Neuropsychology, 2015, vol. 69, p. 93.

    Article  Google Scholar 

  53. Rizzolatti, G. and Rozzi, S., The mirror mechanism in the parietal lobe, Handb. Clin. Neurol., 2018, vol. 151, p. 555.

    Article  PubMed  Google Scholar 

  54. Rizzolatti, G., Fabbri-Destro, M., and Cattaneo, L., Mirror neurons and their clinical relevance, Nat. Clin. Pract. Neurol., 2009, vol. 5, no. 1, p. 24.

    Article  PubMed  Google Scholar 

  55. Gatti R., Rocca M.A., Fumagalli S., et al., The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals, Brain Imaging Behav., 2017, vol. 11, no. 2, p. 565.

    Article  PubMed  Google Scholar 

  56. Calvo-Merino, B., Grezes, J., Glaser, D.E., et al., Seeing or doing? Influence of visual and motor familiarity in action observation, Curr. Biol., 2006, vol. 16, no. 19, p. 1905.

    Article  CAS  PubMed  Google Scholar 

  57. Agnew, Z.K., Wise, R.J., and Leech, R., Dissociating object directed and nonobject directed action in the human mirror system; implications for theories of motor simulation, PloS One, 2012, vol. 7, no. 4, p. e32517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Plata Bello, J., Modrono, C., Marcano, F., and Gonzalez-Mora, J.L., Observation of simple intransitive actions: the effect of familiarity, PloS One, 2013, vol. 8, no. 9, p. e74485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Buccino, G., Binkofski, F., Fink, G.R., et al., Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study, Eur. J. Neurosci., 2001, vol. 13, p. 400.

    CAS  PubMed  Google Scholar 

  60. Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G., Action recognition in the premotor cortex, Brain, 1996, vol. 119, no. 2, p. 593.

    Article  PubMed  Google Scholar 

  61. Roberts, J.W., Bennett, S.J., Elliott, D., and Hayes, S.J., Top-down and bottom-up processes during observation: implications for motor learning, Eur. J. Sport Sci., 2014, vol. 14, suppl. 1, p. S250.

    Article  PubMed  Google Scholar 

  62. Ge, S., Liu, H., Lin, P., et al., Neural basis of action observation and understanding from first- and third-person perspectives: an fMRI study, Front. Behav. Neurosci., 2018, vol. 12, p. 283.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Angelini, M., Fabbri-Destro, M., Lopomo, N.F., et al., Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study, Sci. Rep., 2018, vol. 20, no. 8, p. 12429.

    Article  CAS  Google Scholar 

  64. Hager, B.M., Yang, A.C., and Gutsell, J.N., Measuring brain complexity during neural motor resonance, Front. Neurosci., 2018, vol. 12, p. 758.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bassolino, M., Sandini, G., and Pozzo, T., Activating the motor system through action observation: is this an efficient approach in adults and children? Dev. Med. Child. Neurol., 2015, vol. 57, suppl. 2, p. 42.

    Article  PubMed  Google Scholar 

  66. Borges, L.R., Fernandes, A.B., Melo, L.P., et al., Action observation for upper limb rehabilitation after stroke, Cochrane Database Syst. Rev., 2018, vol. 10, no. 10, art. ID CD011887.

    PubMed  Google Scholar 

  67. Mattar, A.G. and Gribble, P.L., Motor learning by observation, Neuron, 2005, vol. 46, no. 1, p. 153.

    Article  CAS  PubMed  Google Scholar 

  68. McGregor, H.R., Cashaback, J.G.A., and Gribble, P.L., Somatosensory perceptual training enhances motor learning by observing, J. Neurophysiol., 2018, vol. 120, no. 6, p. 3017.

    Article  PubMed  PubMed Central  Google Scholar 

  69. McGarry, L.M., Russo, F.A., Schalles, M.D., and Pineda, J., Audio-visual facilitation of mu rhythm, Exp. Brain Res., 2012, vol. 218, no. 4, p. 527.

    Article  PubMed  Google Scholar 

  70. Buccino, G., Action observation treatment: a novel tool in neurorehabilitation, Philos. Trans. R. Soc., B, 2014, vol. 369, no. 1644, art. ID 20130185.

  71. Sarasso, E., Gemma, M., Agosta, F., et al., Action observation training to improve motor function recovery: a systematic review, Arch. Physiother., 2015, vol. 5, p. 14.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Buccino, G., Molinaro, A., Ambrosi, C., et al., Action observation treatment improves upper limb motor functions in children with cerebral palsy: a combined clinical and brain imaging study, Neural Plast., 2018, vol. 2018, p. 4843985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Grezes, J. and Decety, J., Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis, Hum. Brain Mapp., 2001, vol. 12, p. 1.

    Article  CAS  PubMed  Google Scholar 

  74. Caspers, S., Zilles, K., Laird, A.R., and Eickhoff, S.B., ALE meta-analysis of action observation and imitation in the human brain, NeuroImage, 2010, vol. 50, no. 3, p. 1148.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Molenberghs, P., Cunnington, R., and Mattingley, J.B., Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies, Neurosci. Biobehav. Rev., 2012, vol. 36, no. 1, p. 341.

    Article  PubMed  Google Scholar 

  76. Hetu, S., Gregoire, M., Saimpont, A., et al., The neural network of motor imagery: an ALE meta-analysis, Neurosci. Biobehav. Rev., 2013, vol. 37, no. 5, p. 930.

    Article  PubMed  Google Scholar 

  77. Hardwick, R.M., Caspers, S.B., Eickhoff, S., and Swinnen, S.P., Neural correlates of action: comparing meta-analyses of imagery, observation, and execution, Neurosci. Biobehav. Rev., 2018, vol. 94, p. 31.

    Article  PubMed  Google Scholar 

  78. Savaki, H.E. and Raos, V., Action perception and motor imagery: mental practice of action, Prog. Neurobiol., 2019, vol. 175, p. 107.

    Article  PubMed  Google Scholar 

  79. Filimon, F., Nelson, J.D., Hagler, D.J., and Sereno, M.I., Human cortical representations for reaching: mirror neurons for execution, observation, and imagery, NeuroImage, 2007, vol. 37, no. 4, p. 1315.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Program of Basic Scientific Research of State Academies for 2013–2020 (SP-14, section 63) and the Program of Basic Research of the Presidium of the Russian Academy of Sciences on topic 1.43 “Fundamentals of the Technology of Physiological Adaptations.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Gerasimenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study does not contain any research involving animals or humans.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest connected with the publication of this article.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolbkov, Y.K., Gerasimenko, Y.P. Cognitive Motor Rehabilitation: Imagination and Observation of Motor Actions. Hum Physiol 47, 104–112 (2021). https://doi.org/10.1134/S0362119720060110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720060110

Keywords:

Navigation