Skip to main content

Advertisement

Log in

Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Motor imagery (MI, the mental representation of an action without engaging in its actual execution) is a therapeutically relevant technique to promote motor recovery after neurologic disorders. MI shares common neural and psychological bases with physical practice. Interestingly, both acute and progressive neurologic disorders impact brain motor networks, hence potentially eliciting changes in MI capacities. How experimental neuroscientists and medical practitioners should assess and take into account these changes in order to design fruitful interventions is largely unresolved. Understanding how the psychometric, behavioral and neurophysiological correlates of MI are impacted by neurologic disorders is required. To address this brain-behavior issue, we conducted a systematic review of MI data in stroke, Parkinson’s disease, spinal cord injury, and amputee participants. MI evaluation methods are presented. Redundant MI profiles, primarily based on psychometric and behavioral evaluations, emerged in each clinical population. When present, changes in the psychometric and behavioral correlates of MI were highly congruent with the corresponding motor impairments. Neurophysiological recordings yielded specific changes in cerebral activations during MI, which mirrored structural and functional reorganizations due to neuroplasticity. In this view, MI capacities may not be deteriorated per se by neurologic diseases resulting in chronic motor incapacities, but adjusted to the current state of the motor system. Literature-driven orientations for future clinical research are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Participants with motor deficits are usually requested to press an answer command with lesser or unaffected body parts, or on the basis of eye movements, so as to prevent a confounding effect of motor deficits on RTs.

  2. See data in PKD participants in Sabate et al. (2004), data in AMP participants in Malouin et al. (2009a), and data in STR participants in Decety and Boisson (1990).

  3. See data in participants with a right hemisphere STR in Sabate et al. (2004), data from the implicit MI task in Dominey et al. (1995).

  4. There are many examples in the MP literature of such tests with STR, PKD, SCI and AMP people.

References

  • Abbruzzese, G., Assini, A., Buccolieri, A., Marchese, R., & Trompetto, C. (1999). Changes of intracortical inhibition during motor imagery in human subjects. Neuroscience Letters, 263(2–3), 113–116.

    CAS  PubMed  Google Scholar 

  • Alkadhi, H., Brugger, P., Boendermaker, S. H., Crelier, G., Curt, A., Hepp-Reymond, M. C., et al. (2005). What disconnection tells about motor imagery: evidence from paraplegic patients. Cerebral Cortex, 15(2), 131–140. doi:10.1093/cercor/bhh116.

    PubMed  Google Scholar 

  • Amick, M. M., Schendan, H. E., Ganis, G., & Cronin-Golomb, A. (2006). Frontostriatal circuits are necessary for visuomotor transformation: mental rotation in Parkinson’s disease. Neuropsychologia, 44(3), 339–349. doi:10.1016/j.neuropsychologia.2005.06.002.

    PubMed  Google Scholar 

  • Annett, J. (1995). Motor imagery: perception or action? Neuropsychologia, 33(11), 1395–1417.

    CAS  PubMed  Google Scholar 

  • Bakker, F. C., Boschker, M. S. J., & Chung, T. (1996). Changes in muscular activity while imagining weight lifting using stimulus or response propositions. Journal of Sport & Exercise Psychology, 18, 313–324.

    Google Scholar 

  • Battaglia, F., Quartarone, A., Ghilardi, M. F., Dattola, R., Bagnato, S., Rizzo, V., et al. (2006). Unilateral cerebellar stroke disrupts movement preparation and motor imagery. Clinical Neurophysiology, 117(5), 1009–1016. doi:10.1016/j.clinph.2006.01.008.

    PubMed  Google Scholar 

  • Beaumont, G., Mercier, C., Michon, P. E., Malouin, F., & Jackson, P. L. (2011). Decreasing phantom limb pain through observation of action and imagery: a case series. Pain Medicine, 12(2), 289–299. doi:10.1111/j.1526-4637.2010.01048.x.

    PubMed  Google Scholar 

  • Berthoz, A. (1996). The role of inhibition in the hierarchical gating of executed and imagined movements. Brain Research. Cognitive Brain Research, 3(2), 101–113.

    CAS  PubMed  Google Scholar 

  • Bonnet, M., Decety, J., Jeannerod, M., & Requin, J. (1997). Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Cognit Brain Res, 5(3), 221–228. doi:10.1016/S0926-6410(96)00072-9.

    CAS  Google Scholar 

  • Boschker, M. S. J. (2001). Action-based imagery: on the nature of mentally imagined motor actions. Amsterdam: University of Amsterdam.

    Google Scholar 

  • Bowering, K. J., O’Connell, N. E., Tabor, A., Catley, M. J., Leake, H. B., Moseley, G. L., et al. (2013). The effects of graded motor imagery and its components on chronic pain: a systematic review and meta-analysis. The Journal of Pain, 14(1), 3–13. doi:10.1016/j.jpain.2012.09.007.

    PubMed  Google Scholar 

  • Brady, N., Maguinness, C., & Ni Choisdealbha, A. (2011). My hand or yours? Markedly different sensitivity to egocentric and allocentric views in the hand laterality task. PLoS One, 6(8), e23316. doi:10.1371/journal.pone.0023316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, S., Kleynen, M., Schols, J., Schack, T., Beurskens, A., & Wade, D. (2008). Using mental practice in stroke rehabilitation: a framework. Clinical Rehabilitation, 22(7), 579–591. doi:10.1177/0269215508090066.

    PubMed  Google Scholar 

  • Braun, S. M., van Haastregt, J. C., Beurskens, A. J., Gielen, A. I., Wade, D. T., & Schols, J. M. (2010). Feasibility of a mental practice intervention in stroke patients in nursing homes; a process evaluation. BMC Neurology, 10, 74. doi:10.1186/1471-2377-10-74.

    PubMed  PubMed Central  Google Scholar 

  • Braun, S., Beurskens, A., Kleynen, M., Schols, J., & Wade, D. (2011). Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: a multicentre randomised trial. Journal of Physiotherapy, 57(1), 27–34. doi:10.1016/S1836-9553(11)70004-2.

    PubMed  Google Scholar 

  • Braun, S., Kleynen, M., van Heel, T., Kruithof, N., Wade, D., & Beurskens, A. (2013). The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Frontiers in Human Neuroscience, 7, 390. doi:10.3389/fnhum.2013.00390.

    PubMed  PubMed Central  Google Scholar 

  • Butler, A. J., & Page, S. J. (2006). Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke. Archives of Physical Medicine and Rehabilitation, 87(12 Suppl 2), S2–11. doi:10.1016/j.apmr.2006.08.326.

    PubMed  PubMed Central  Google Scholar 

  • Butler, A. J., Cazeaux, J., Fidler, A., Jansen, J., Lefkove, N., Gregg, M., et al. (2012). The Movement Imagery Questionnaire-Revised, Second edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evidence-based Complementary and Alternative Medicine, 2012, 497289. doi:10.1155/2012/497289.

    PubMed  PubMed Central  Google Scholar 

  • Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917–929. doi:10.1016/j.neuropsychologia.2004.09.006.

    PubMed  Google Scholar 

  • Cicinelli, P., Marconi, B., Zaccagnini, M., Pasqualetti, P., Filippi, M. M., & Rossini, P. M. (2006). Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study. Cerebral Cortex, 16(2), 247–253. doi:10.1093/cercor/bhi103.

    PubMed  Google Scholar 

  • Cincotta, M., Tozzi, F., Zaccara, G., Borgheresi, A., Lori, S., Cosottini, M., et al. (1999). Motor imagery in a locked-in patient: evidence from transcranial magnetic stimulation. Italian Journal of Neurological Sciences, 20(1), 37–41.

    CAS  PubMed  Google Scholar 

  • Clark, S., Tremblay, F., & Ste-Marie, D. (2004). Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions. Neuropsychologia, 42(1), 105–112.

    PubMed  Google Scholar 

  • Cohen, R. G., Chao, A., Nutt, J. G., & Horak, F. B. (2011). Freezing of gait is associated with a mismatch between motor imagery and motor execution in narrow doorways, not with failure to judge doorway passability. Neuropsychologia, 49(14), 3981–3988. doi:10.1016/j.neuropsychologia.2011.10.014.

    PubMed  PubMed Central  Google Scholar 

  • Collet, C., & Guillot, A. (2009). Peripheral responses elicited by motor imagery: A window on central and peripheral nervous system relationships through motor commands inhibition. In S. P. Weingarten & H. O. Penat (Eds.), Cognitive psychology research developments (pp. 1–17). United States: Nova.

    Google Scholar 

  • Collet, C., Guillot, A., Lebon, F., MacIntyre, T., & Moran, A. (2011). Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exercise and Sport Sciences Reviews, 39(2), 85–92. doi:10.1097/JES.0b013e31820ac5e0.

    PubMed  Google Scholar 

  • Collet, C., Di Rienzo, F., El Hoyek, N., & Guillot, A. (2013). Autonomic nervous system correlates in movement observation and motor imagery. Frontiers in Human Neuroscience, 7, 415. doi:10.3389/fnhum.2013.00415.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Confalonieri, L., Pagnoni, G., Barsalou, L. W., Rajendra, J., Eickhoff, S. B., & Butler, A. J. (2012). Brain activation in primary motor and somatosensory cortices during motor imagery correlates with motor imagery ability in stroke patients. ISRN Neurol, 2012, 613595. doi:10.5402/2012/613595.

    PubMed  PubMed Central  Google Scholar 

  • Conson, M., Mazzarella, E., Donnarumma, C., & Trojano, L. (2012). Judging hand laterality from my or your point of view: interactions between motor imagery and visual perspective. Neuroscience Letters, 530(1), 35–40. doi:10.1016/j.neulet.2012.09.051.

    CAS  PubMed  Google Scholar 

  • Coslett, H. B. (1998). Evidence for a disturbance of the body schema in neglect. Brain and Cognition, 37(3), 527–544. doi:10.1006/brcg.1998.1011.

    CAS  PubMed  Google Scholar 

  • Craje, C., van der Graaf, C., Lem, F. C., Geurts, A. C., & Steenbergen, B. (2010). Determining specificity of motor imagery training for upper limb improvement in chronic stroke patients: a training protocol and pilot results. International Journal of Rehabilitation Research, 33(4), 359–362. doi:10.1097/MRR.0b013e32833abe8e.

    PubMed  Google Scholar 

  • Cramer, S. C., Lastra, L., Lacourse, M. G., & Cohen, M. J. (2005). Brain motor system function after chronic, complete spinal cord injury. Brain, 128(Pt 12), 2941–2950. doi:10.1093/brain/awh648.

    PubMed  Google Scholar 

  • Cramer, S. C., Orr, E. L., Cohen, M. J., & Lacourse, M. G. (2007). Effects of motor imagery training after chronic, complete spinal cord injury. Experimental Brain Research, 177(2), 233–242. doi:10.1007/s00221-006-0662-9.

    PubMed  Google Scholar 

  • Cremers, J., D’Ostilio, K., Stamatakis, J., Delvaux, V., & Garraux, G. (2012). Brain activation pattern related to gait disturbances in Parkinson’s disease. Movement Disorders, 27(12), 1498–1505. doi:10.1002/mds.25139.

    PubMed  Google Scholar 

  • Cunnington, R., Iansek, R., Johnson, K. A., & Bradshaw, J. L. (1997). Movement-related potentials in Parkinson’s disease. Motor imagery and movement preparation. Brain, 120(Pt 8), 1339–1353.

    PubMed  Google Scholar 

  • Cunnington, R., Egan, G. F., O’Sullivan, J. D., Hughes, A. J., Bradshaw, J. L., & Colebatch, J. G. (2001). Motor imagery in Parkinson’s disease: a PET study. Movement Disorders, 16(5), 849–857.

    CAS  PubMed  Google Scholar 

  • Curtze, C., Otten, B., & Postema, K. (2010). Effects of lower limb amputation on the mental rotation of feet. Experimental Brain Research, 201(3), 527–534. doi:10.1007/s00221-009-2067-z.

    PubMed  PubMed Central  Google Scholar 

  • da Paz, A. C., Jr., Braga, L. W., & Downs, J. H., 3rd. (2000). A preliminary functional brain study on amputees. Applied Neuropsychology, 7(3), 121–125. doi:10.1207/s15324826an0703_1.

    PubMed  Google Scholar 

  • Danckert, J., Ferber, S., Doherty, T., Steinmetz, H., Nicolle, D., & Goodale, M. A. (2002). Selective, non-lateralized impairment of motor imagery following right parietal damage. Neurocase, 8(3), 194–204. doi:10.1093/neucas/8.3.194.

    PubMed  Google Scholar 

  • Daprati, E., Nico, D., Duval, S., & Lacquaniti, F. (2010). Different motor imagery modes following brain damage. Cortex, 46(8), 1016–1030. doi:10.1016/j.cortex.2009.08.002.

    PubMed  Google Scholar 

  • Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Neuroscience, 16(7), 838–844. doi:10.1038/nn.3422.

    CAS  PubMed  Google Scholar 

  • De Vico Fallani, F., Pichiorri, F., Morone, G., Molinari, M., Babiloni, F., Cincotti, F., et al. (2013). Multiscale topological properties of functional brain networks during motor imagery after stroke. NeuroImage, 83C, 438–449. doi:10.1016/j.neuroimage.2013.06.039.

    Google Scholar 

  • de Vries, S., Tepper, M., Otten, B., & Mulder, T. (2011). Recovery of motor imagery ability in stroke patients. Rehabil Res Pract, 2011, 283840. doi:10.1155/2011/283840.

    PubMed  PubMed Central  Google Scholar 

  • Decety, J. (1993). Should motor imagery be used in physiotherapy? Recent advances in cognitive neurosciences. Physiotherapy Theory and Practice, 9(4), 193–203. doi:10.3109/09593989309036491.

    Google Scholar 

  • Decety, J., & Boisson, D. (1990). Effect of brain and spinal cord injuries on motor imagery. European Archives of Psychiatry and Clinical Neuroscience, 240(1), 39–43.

    CAS  PubMed  Google Scholar 

  • Decety, J., & Grezes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends in Cognitive Science, 3(5), 172–178.

    Google Scholar 

  • Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition, 11(1), 87–97.

    CAS  PubMed  Google Scholar 

  • Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research, 34(1–2), 35–42.

    CAS  PubMed  Google Scholar 

  • Demougeot, L., & Papaxanthis, C. (2011). Muscle fatigue affects mental simulation of action. Journal of Neuroscience, 31(29), 10712–10720. doi:10.1523/JNEUROSCI.6032-10.2011.

    CAS  PubMed  Google Scholar 

  • Dettmers, C., Benz, M., Liepert, J., & Rockstroh, B. (2012). Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases. Acta Neurologica Scandinavica. doi:10.1111/j.1600-0404.2012.01680.x.

    PubMed  Google Scholar 

  • Deutsch, J. E., Maidan, I., & Dickstein, R. (2012). Patient-centered integrated motor imagery delivered in the home with telerehabilitation to improve walking after stroke. Physical Therapy, 92(8), 1065–1077. doi:10.2522/ptj.20110277.

    PubMed  PubMed Central  Google Scholar 

  • Di Rienzo, F., Collet, C., Hoyek, N., & Guillot, A. (2012). Selective effect of physical fatigue on motor imagery accuracy. PLoS One, 7(10), e47207. doi:10.1371/journal.pone.0047207.

    PubMed  PubMed Central  Google Scholar 

  • Di Rienzo, F., Guillot, A., Daligault, S., Delpuech, C., Rode, G., & Collet, C. (2013). Motor inhibition during motor imagery: a MEG study with a quadriplegic patient. Neurocase, doi:10.1080/13554794.2013.826685.

  • Dickstein, R., Dunsky, A., & Marcovitz, E. (2004). Motor imagery for gait rehabilitation in post-stroke hemiparesis. Physical Therapy, 84(12), 1167–1177.

    PubMed  Google Scholar 

  • Dickstein, R., Gazit-Grunwald, M., Plax, M., Dunsky, A., & Marcovitz, E. (2005). EMG activity in selected target muscles during imagery rising on tiptoes in healthy adults and poststroke hemiparetic patients. Journal of Motor Behavior, 37(6), 475–483. doi:10.3200/JMBR.37.6.475-483.

    PubMed  Google Scholar 

  • Dickstein, R., Deutsch, J. E., Yoeli, Y., Kafri, M., Flash, F., Dunsky, A., et al. (2013). Effects of integrated motor imagery practice on gait of individuals with chronic stroke: a half-cross-over randomized study. Archives of Physical Medicine and Rehabilitation. doi:10.1016/j.apmr.2013.06.031.

    PubMed  Google Scholar 

  • Diers, M., Christmann, C., Koeppe, C., Ruf, M., & Flor, H. (2010). Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain, 149(2), 296–304. doi:10.1016/j.pain.2010.02.020.

    PubMed  Google Scholar 

  • Dijkerman, H. C., Ietswaart, M., Johnston, M., & MacWalter, R. S. (2004). Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clinical Rehabilitation, 18(5), 538–549.

    CAS  PubMed  Google Scholar 

  • Dominey, P., Decety, J., Broussolle, E., Chazot, G., & Jeannerod, M. (1995). Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia, 33(6), 727–741.

    CAS  PubMed  Google Scholar 

  • Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79, 481–492.

    Google Scholar 

  • Dunsky, A., Dickstein, R., Ariav, C., Deutsch, J., & Marcovitz, E. (2006). Motor imagery practice in gait rehabilitation of chronic post-stroke hemiparesis: four case studies. International Journal of Rehabilitation Research, 29(4), 351–356. doi:10.1097/MRR.0b013e328010f559.

    PubMed  Google Scholar 

  • Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., & Deutsch, J. E. (2008). Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Archives of Physical Medicine and Rehabilitation, 89(8), 1580–1588. doi:10.1016/j.apmr.2007.12.039.

    PubMed  Google Scholar 

  • Ersland, L., Rosen, G., Lundervold, A., Smievoll, A. I., Tillung, T., Sundberg, H., et al. (1996). Phantom limb imaginary fingertapping causes primary motor cortex activation: an fMRI study. Neuroreport, 8(1), 207–210.

    CAS  PubMed  Google Scholar 

  • Facchini, S., Muellbacher, W., Battaglia, F., Boroojerdi, B., & Hallett, M. (2002). Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurologica Scandinavica, 105(3), 146–151.

    CAS  PubMed  Google Scholar 

  • Fadiga, L., Buccino, G., Craighero, L., Fogassi, L., Gallese, V., & Pavesi, G. (1998). Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia, 37(2), 147–158. doi:10.1016/S0028-3932(98)00089-X.

    Google Scholar 

  • Fadiga, L., Buccino, G., Craighero, L., Fogassi, L., Gallese, V., & Pavesi, G. (1999). Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia, 37(2), 147–158.

    CAS  PubMed  Google Scholar 

  • Faralli, A., Bigoni, M., Mauro, A., Rossi, F., & Carulli, D. (2013). Noninvasive strategies to promote functional recovery after stroke. Neural Plasticity, 2013, 854597. doi:10.1155/2013/854597.

    PubMed  PubMed Central  Google Scholar 

  • Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: a meta-analysis. Journal of Sport & Exercise Psychology, 5, 25–57.

    Google Scholar 

  • Filippi, M. M., Oliveri, M., Pasqualetti, P., Cicinelli, P., Traversa, R., Vernieri, F., et al. (2001). Effects of motor imagery on motor cortical output topography in Parkinson’s disease. Neurology, 57(1), 55–61.

    CAS  PubMed  Google Scholar 

  • Fiori, F., Sedda, A., Ferre, E. R., Toraldo, A., Querzola, M., Pasotti, F., et al. (2013). Motor imagery in spinal cord injury patients: moving makes the difference. Journal of Neuropsychology. doi:10.1111/jnp.12020.

    PubMed  Google Scholar 

  • Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., et al. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375(6531), 482–484. doi:10.1038/375482a0.

    CAS  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    CAS  PubMed  Google Scholar 

  • Fournier, J. F. (2000). Imagix: multimedia software for evaluating the vividness of movement-imagery. Perceptual and Motor Skills, 90(2), 367–370.

    CAS  PubMed  Google Scholar 

  • Frak, V., Cohen, H., & Pourcher, E. (2004). A dissociation between real and simulated movements in Parkinson’s disease. Neuroreport, 15(9), 1489–1492.

    PubMed  Google Scholar 

  • Gaggioli, A., Morganti, F., Meneghini, A., Pozzato, I., Greggio, G., Pigatto, M., et al. (2009). Computer-guided mental practice in neurorehabilitation. Studies in Health Technology and Informatics, 145, 195–208.

    PubMed  Google Scholar 

  • Gandevia, S. C., Wilson, L. R., Inglis, J. T., & Burke, D. (1997). Mental rehearsal of motor tasks recruits alpha-motoneurones but fails to recruit human fusimotor neurones selectively. Journal of Physiology, 505(Pt 1), 259–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, B., Rodriguez, M., Ramirez, C., & Sabate, M. (2005). Disturbance of motor imagery after cerebellar stroke. Behavioral Neuroscience, 119(2), 622–626. doi:10.1037/0735-7044.119.2.622.

    PubMed  Google Scholar 

  • Grangeon, M., Charvier, K., Guillot, A., Rode, G., & Collet, C. (2012a). Using sympathetic skin responses in individuals with spinal cord injury as a quantitative evaluation of motor imagery abilities. Physical Therapy, 92(6), 831–840. doi:10.2522/ptj.20110351.

    PubMed  Google Scholar 

  • Grangeon, M., Revol, P., Guillot, A., Rode, G., & Collet, C. (2012b). Could motor imagery be effective in upper limb rehabilitation of individuals with spinal cord injury? A case study. Spinal Cord, 50(10), 766–771. doi:10.1038/sc.2012.41.

    CAS  PubMed  Google Scholar 

  • Gregg, M., Hall, C., & Butler, A. (2010). The MIQ-RS: a suitable option for examining movement imagery ability. Evidence-Based Complementary and Alternative Medicine, 7(2), 249–257.

    PubMed  PubMed Central  Google Scholar 

  • Grush, R. (2004). The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396. discussion 396–442.

    PubMed  Google Scholar 

  • Guillot, A., & Collet, C. (2005). Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Research. Brain Research Reviews, 50(2), 387–397. doi:10.1016/j.brainresrev.2005.09.004.

    PubMed  Google Scholar 

  • Guillot, A., & Collet, C. (2008). Construction of the Motor Imagery Integrative Model in Sport: a review and theoretical investigation of motor imagery use. Int Rev Sport Exerc Psychol, 1(1), 31–44.

    Google Scholar 

  • Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., & Collet, C. (2007). Muscular responses during motor imagery as a function of muscle contraction types. International Journal of Psychophysiology, 66(1), 18–27. doi:10.1016/j.ijpsycho.2007.05.009.

    CAS  PubMed  Google Scholar 

  • Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2008). Functional neuroanatomical networks associated with expertise in motor imagery. NeuroImage, 41(4), 1471–1483. doi:10.1016/j.neuroimage.2008.03.042.

    PubMed  Google Scholar 

  • Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: an fMRI study. Human Brain Mapping, 30(7), 2157–2172. doi:10.1002/hbm.20658.

    PubMed  Google Scholar 

  • Guillot, A., Lebon, F., & Collet, C. (2010). Electromyographic activity during motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (pp. 83–93). New York, NY: Oxford University Press.

    Google Scholar 

  • Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., & Collet, C. (2012a). Imagining is Not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Frontiers in Human Neuroscience, 6, 247. doi:10.3389/fnhum.2012.00247.

    PubMed  PubMed Central  Google Scholar 

  • Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012b). Understanding the timing of motor imagery: recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3–22. doi:10.1080/1750984x.2011.623787.

    Google Scholar 

  • Guillot, A., Di Rienzo, F., & Collet, C. (2014). The neurofunctional architecture of motor imagery. In T. D. Papageorgiou, G. Christopoulos, & S. Smirnakis (Eds.), Functional magnetic resonance imaging / Book 1: In Tech.

  • Gustin, S. M., Wrigley, P. J., Gandevia, S. C., Middleton, J. W., Henderson, L. A., & Siddall, P. J. (2008). Movement imagery increases pain in people with neuropathic pain following complete thoracic spinal cord injury. Pain, 137(2), 237–244. doi:10.1016/j.pain.2007.08.032.

    PubMed  Google Scholar 

  • Gustin, S. M., Wrigley, P. J., Henderson, L. A., & Siddall, P. J. (2010). Brain circuitry underlying pain in response to imagined movement in people with spinal cord injury. Pain, 148(3), 438–445. doi:10.1016/j.pain.2009.12.001.

    PubMed  Google Scholar 

  • Hale, B. S., Raglin, J. S., & Koceja, D. M. (2003). Effect of mental imagery of a motor task on the Hoffmann reflex. Behavioural Brain Research, 142(1–2), 81–87.

    CAS  PubMed  Google Scholar 

  • Hall, C. R., & Martin, K. A. (1997). Measuring movement imagery abilities: a revision of the movement imagery questionnaire. Journal of mental imagery, 21(1–2), 143–154.

    Google Scholar 

  • Hall, E. G., & Pongrac, J. (1983). Movement imagery questionnaire. London, Ontario, Canada: University of Western Ontario.

    Google Scholar 

  • Harris, A. J. (1999). Cortical origin of pathological pain. Lancet, 354(9188), 1464–1466. doi:10.1016/S0140-6736(99)05003-5.

    CAS  PubMed  Google Scholar 

  • Helmich, R. C., de Lange, F. P., Bloem, B. R., & Toni, I. (2007). Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia, 45(10), 2201–2215. doi:10.1016/j.neuropsychologia.2007.02.024.

    PubMed  Google Scholar 

  • Helmich, R. C., Bloem, B. R., & Toni, I. (2011). Motor imagery evokes increased somatosensory activity in parkinson’s disease patients with tremor. Human Brain Mapping. doi:10.1002/hbm.21318.

    Google Scholar 

  • Hemmen, B., & Seelen, H. A. (2007). Effects of movement imagery and electromyography-triggered feedback on arm hand function in stroke patients in the subacute phase. Clinical Rehabilitation, 21(7), 587–594. doi:10.1177/0269215507075502.

    CAS  PubMed  Google Scholar 

  • Heremans, E., Helsen, W. F., & Feys, P. (2008). The eyes as a mirror of our thoughts: quantification of motor imagery of goal-directed movements through eye movement registration. Behavioural Brain Research, 187(2), 351–360. doi:10.1016/j.bbr.2007.09.028.

    PubMed  Google Scholar 

  • Heremans, E., Feys, P., Nieuwboer, A., Vercruysse, S., Vandenberghe, W., Sharma, N., et al. (2011). Motor imagery ability in patients with early- and mid-stage Parkinson disease. Neurorehabilitation and Neural Repair, 25(2), 168–177. doi:10.1177/1545968310370750.

    PubMed  Google Scholar 

  • Heremans, E., Nieuwboer, A., Feys, P., Vercruysse, S., Vandenberghe, W., Sharma, N., et al. (2012). External cueing improves motor imagery quality in patients with Parkinson disease. Neurorehabilitation and Neural Repair, 26(1), 27–35. doi:10.1177/1545968311411055.

    PubMed  Google Scholar 

  • Hetu, S., Gregoire, M., Saimpont, A., Coll, M. P., Eugene, F., Michon, P. E., et al. (2013). The neural network of motor imagery: an ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 37(5), 930–949. doi:10.1016/j.neubiorev.2013.03.017.

    PubMed  Google Scholar 

  • Holmes, P. S., & Collins, D. J. (2001). The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psych, 13(1), 60–83. doi:10.1080/10413200109339004.

    Google Scholar 

  • Hotz-Boendermaker, S., Funk, M., Summers, P., Brugger, P., Hepp-Reymond, M. C., Curt, A., et al. (2008). Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements. NeuroImage, 39(1), 383–394. doi:10.1016/j.neuroimage.2007.07.065.

    PubMed  Google Scholar 

  • Hovington, C. L., & Brouwer, B. (2010). Guided motor imagery in healthy adults and stroke: does strategy matter? Neurorehabilitation and Neural Repair, 24(9), 851–857. doi:10.1177/1545968310374190.

    PubMed  Google Scholar 

  • Hoyek, N., Di Rienzo, F., Collet, C., Creveaux, T., & Guillot, A. (2013). Hand mental rotation is not systematically altered by actual body position: Laterality judgment versus same–different comparison tasks. Attention, Perception, & Psychophysics doi:10.3758/s13414-013-0577-z.

  • Hugdahl, K., Rosen, G., Ersland, L., Lundervold, A., Smievoll, A. I., Barndon, R., et al. (2001). Common pathways in mental imagery and pain perception: an fMRI study of a subject with an amputated arm. Scandinavian Journal of Psychology, 42(3), 269–275.

    CAS  PubMed  Google Scholar 

  • Hwang, S., Jeon, H. S., Yi, C. H., Kwon, O. Y., Cho, S. H., & You, S. H. (2010). Locomotor imagery training improves gait performance in people with chronic hemiparetic stroke: a controlled clinical trial. Clinical Rehabilitation, 24(6), 514–522. doi:10.1177/0269215509360640.

    PubMed  Google Scholar 

  • Ionta, S., Perruchoud, D., Draganski, B., & Blanke, O. (2012). Body context and posture affect mental imagery of hands. PLoS One, 7(3), e34382. doi:10.1371/journal.pone.0034382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaac, A. R., Marks, D. F., & Russell, D. H. (1986). An instrument for assessing imagery of movement. The vividness of movement imagery questionnaire. J Ment Imagery, 10, 23–30.

    Google Scholar 

  • Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation, 82(8), 1133–1141. doi:10.1053/apmr.2001.24286.

    CAS  PubMed  Google Scholar 

  • Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. NeuroImage, 20(2), 1171–1180. doi:10.1016/s1053-8119(03)00369-0.

    PubMed  Google Scholar 

  • Jackson, P. L., Doyon, J., Richards, C. L., & Malouin, F. (2004). The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabilitation and Neural Repair, 18(2), 106–111. doi:10.1177/0888439004265249.

    PubMed  Google Scholar 

  • Jacobson, E. (1930). Electrical measurements of neuromuscular states during mental activities. American Journal of Physiology, 91, 567–608.

    Google Scholar 

  • Jacobson, E. (1932). Electrophysiology of mental activities. American Journal of Psychology, 44, 677–694.

    Google Scholar 

  • Jeannerod, M. (1994). The representing brain: neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(02), 187–202. doi:10.1017/S0140525X00034026.

    Google Scholar 

  • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419–1432.

    CAS  PubMed  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14(1 Pt 2), S103–109. doi:10.1006/nimg.2001.0832.

    CAS  PubMed  Google Scholar 

  • Johnson, S. H. (2000). Imagining the impossible: intact motor representations in hemiplegics. Neuroreport, 11(4), 729–732.

    CAS  PubMed  Google Scholar 

  • Johnson, S. H., Sprehn, G., & Saykin, A. J. (2002). Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. Journal of Cognitive Neuroscience, 14(6), 841–852. doi:10.1162/089892902760191072.

    PubMed  Google Scholar 

  • Karl, A., Birbaumer, N., Lutzenberger, W., Cohen, L. G., & Flor, H. (2001). Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. Journal of Neuroscience, 21(10), 3609–3618.

    CAS  PubMed  Google Scholar 

  • Kasai, T., Kawai, S., Kawanishi, M., & Yahagi, S. (1997). Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery. Brain Research, 744(1), 147–150.

    CAS  PubMed  Google Scholar 

  • Kim, J. S., Oh, D. W., Kim, S. Y., & Choi, J. D. (2011). Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke. Clinical Rehabilitation, 25(2), 134–145. doi:10.1177/0269215510380822.

    PubMed  Google Scholar 

  • Kimberley, T. J., Khandekar, G., Skraba, L. L., Spencer, J. A., Van Gorp, E. A., & Walker, S. R. (2006). Neural substrates for motor imagery in severe hemiparesis. Neurorehabilitation and Neural Repair, 20(2), 268–277. doi:10.1177/1545968306286958.

    PubMed  Google Scholar 

  • Knecht, S., Henningsen, H., Elbert, T., Flor, H., Hohling, C., Pantev, C., et al. (1996). Reorganizational and perceptional changes after amputation. Brain, 119(Pt 4), 1213–1219.

    PubMed  Google Scholar 

  • Kokotilo, K. J., Eng, J. J., & Curt, A. (2009). Reorganization and preservation of motor control of the brain in spinal cord injury: a systematic review. Journal of Neurotrauma, 26(11), 2113–2126. doi:10.1089/neu.2008.0688.

    PubMed  PubMed Central  Google Scholar 

  • Kuhn, A. A., Doyle, L., Pogosyan, A., Yarrow, K., Kupsch, A., Schneider, G. H., et al. (2006). Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson’s disease. Brain, 129(Pt 3), 695–706. doi:10.1093/brain/awh715.

    PubMed  Google Scholar 

  • Lacourse, M. G., Cohen, M. J., Lawrence, K. E., & Romero, D. H. (1999). Cortical potentials during imagined movements in individuals with chronic spinal cord injuries. Behavioural Brain Research, 104(1–2), 73–88. doi:10.1016/S0166-4328(99)00052-2.

    CAS  PubMed  Google Scholar 

  • Lacourse, M. G., Turner, J. A., Randolph-Orr, E., Schandler, S. L., & Cohen, M. J. (2004). Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. Journal of Rehabilitation Research and Development, 41(4), 505–524.

    PubMed  Google Scholar 

  • Lebon, F., Byblow, W. D., Collet, C., Guillot, A., & Stinear, C. M. (2012). The modulation of motor cortex excitability during motor imagery depends on imagery quality. European Journal of Neuroscience, 35(2), 323–331. doi:10.1111/j.1460-9568.2011.07938.x.

    PubMed  Google Scholar 

  • Leonard, G., & Tremblay, F. (2007). Corticomotor facilitation associated with observation, imagery and imitation of hand actions: a comparative study in young and old adults. Experimental Brain Research, 177(2), 167–175. doi:10.1007/s00221-006-0657-6.

    PubMed  Google Scholar 

  • Lequerica, A., Rapport, L., Axelrod, B. N., Telmet, K., & Whitman, R. D. (2002). Subjective and objective assessment methods of mental imagery control: construct validation of self-report measures. Journal of Clinical and Experimental Neuropsychology, 24(8), 1103–1116. doi:10.1076/jcen.24.8.1103.8370.

    PubMed  Google Scholar 

  • Levin, O., Steyvers, M., Wenderoth, N., Li, Y., & Swinnen, S. P. (2004). Dynamical changes in corticospinal excitability during imagery of unimanual and bimanual wrist movements in humans: a transcranial magnetic stimulation study. Neuroscience Letters, 359(3), 185–189. doi:10.1016/j.neulet.2004.01.070.

    CAS  PubMed  Google Scholar 

  • Li, C. R. (2000). Impairment of motor imagery in putamen lesions in humans. Neuroscience Letters, 287(1), 13–16.

    CAS  PubMed  Google Scholar 

  • Liepert, J., Greiner, J., Nedelko, V., & Dettmers, C. (2012). Reduced upper limb sensation impairs mental chronometry for motor imagery after stroke : clinical and electrophysiological findings. Neurorehab Neural Rep. doi:10.1177/1545968311425924.

    Google Scholar 

  • Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: the influence of posture and perspective. Experimental Brain Research, 194(2), 233–243. doi:10.1007/s00221-008-1693-1.

    PubMed  Google Scholar 

  • Lorey, B., Pilgramm, S., Bischoff, M., Stark, R., Vaitl, D., Kindermann, S., et al. (2011). Activation of the parieto-premotor network is associated with vivid motor imagery–a parametric FMRI study. PLoS One, 6(5), e20368. doi:10.1371/journal.pone.0020368.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze, M., & Halsband, U. (2006). Motor imagery. Journal of Physiology, Paris, 99(4–6), 386–395. doi:10.1016/j.jphysparis.2006.03.012.

    PubMed  Google Scholar 

  • Lotze, M., Montoya, P., Erb, M., Hulsmann, E., Flor, H., Klose, U., et al. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cognit Neurosci, 11(5), 491–501. doi:10.1162/089892999563553.

    CAS  Google Scholar 

  • Lotze, M., Flor, H., Grodd, W., Larbig, W., & Birbaumer, N. (2001). Phantom movements and pain. An fMRI study in upper limb amputees. Brain, 124(Pt 11), 2268–2277.

    CAS  Google Scholar 

  • Louis, M., Guillot, A., Maton, S., Doyon, J., & Collet, C. (2008). Effect of imagined movement speed on subsequent motor performance. Journal of Motor Behavior, 40(2), 117–132. doi:10.3200/JMBR.40.2.117-132.

    PubMed  Google Scholar 

  • MacIver, K., Lloyd, D. M., Kelly, S., Roberts, N., & Nurmikko, T. (2008). Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain, 131(Pt 8), 2181–2191. doi:10.1093/brain/awn124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. NeuroImage, 59(3), 2798–2807. doi:10.1016/j.neuroimage.2011.09.083.

    PubMed  PubMed Central  Google Scholar 

  • Maillet, A., Pollak, P., & Debu, B. (2012). Imaging gait disorders in parkinsonism: a review. Journal of Neurology, Neurosurgery and Psychiatry, 83(10), 986–993. doi:10.1136/jnnp-2012-302461.

    PubMed  Google Scholar 

  • Malouin, F., & Richards, C. L. (2010). Mental practice for relearning locomotor skills. Physical Therapy, 90(2), 240–251. doi:10.2522/ptj.20090029.

    PubMed  Google Scholar 

  • Malouin, F., Belleville, S., Richards, C. L., Desrosiers, J., & Doyon, J. (2004a). Working memory and mental practice outcomes after stroke. Archives of Physical Medicine and Rehabilitation, 85(2), 177–183.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Desrosiers, J., & Doyon, J. (2004b). Bilateral slowing of mentally simulated actions after stroke. Neuroreport, 15(8), 1349–1353.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Doyon, J., Desrosiers, J., & Belleville, S. (2004c). Training mobility tasks after stroke with combined mental and physical practice: a feasibility study. Neurorehabilitation and Neural Repair, 18(2), 66–75. doi:10.1177/0888439004266304.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Jackson, P. L., Lafleur, M. F., Durand, A., & Doyon, J. (2007). The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. Journal of Neurologic Physical Therapy, 31(1), 20–29. doi:10.1097/01.NPT.0000260567.24122.64.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2008a). Clinical assessment of motor imagery after stroke. Neurorehabil Neural Rep, 22(4), 330–340. doi:10.1177/1545968307313499.

    Google Scholar 

  • Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2008b). Reliability of mental chronometry for assessing motor imagery ability after stroke. Archives of Physical Medicine and Rehabilitation, 89(2), 311–319. doi:10.1016/j.apmr.2007.11.006.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Durand, A., Descent, M., Poire, D., Fremont, P., et al. (2009a). Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness. Neurorehabilitation and Neural Repair, 23(5), 449–463. doi:10.1177/1545968308328733.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2009b). Added value of mental practice combined with a small amount of physical practice on the relearning of rising and sitting post-stroke: a pilot study. Journal of Neurologic Physical Therapy, 33(4), 195–202. doi:10.1097/NPT.0b013e3181c2112b.

    PubMed  Google Scholar 

  • Malouin, F., Richards, C. L., Jackson, P. L., Dumas, F., & Doyon, J. (2010). Motor imagery for optimizing the reacquisition of locomotor skills after cerebral damage. The neurophysiological foundations of mental and motor imagery. A. Guillot and C. Collet. New York, NY, Oxford University Press: 161--176.

  • Malouin, F., Richards, C. L., & Durand, A. (2012). Slowing of motor imagery after a right hemispheric stroke. Stroke Res Treat, 2012, 297217. doi:10.1155/2012/297217.

    PubMed  PubMed Central  Google Scholar 

  • Malouin, F., Jackson, P. L., & Richards, C. L. (2013). Towards the integration of mental practice in rehabilitation programs. A critical review. Front Hum Neurosci, 7, doi:10.3389/fnhum.2013.00576.

  • Marconi, B., Koch, G., Pecchioli, C., Cavallari, P., & Caltagirone, C. (2007). Breakdown of inhibitory effects induced by foot motor imagery on hand motor area in lower-limb amputees. Clinical Neurophysiology, 118(11), 2468–2478. doi:10.1016/j.clinph.2007.08.021.

    PubMed  Google Scholar 

  • Marks, D. F. (1973). Visual imagery differences in the recall of pictures. British journal of Psychology, 64(1), 17–24.

    CAS  PubMed  Google Scholar 

  • Marks, D. F., & Isaac, A. R. (1995). Topographical distribution of EEG activity accompanying visual and motor imagery in vivid and non-vivid imagers. British Journal of Psychology, 86(Pt 2), 271–282.

    PubMed  Google Scholar 

  • Matsunaga, K., Uozumi, T., Tsuji, S., & Murai, Y. (1998). Sympathetic skin responses recorded from non-palmar and non-plantar skin sites: their role in the evaluation of thermal sweating. Electroencephalography and Clinical Neurophysiology, 108(5), 482–489.

    CAS  PubMed  Google Scholar 

  • McAvinue, L. P., & Robertson, I. H. (2011). Individual differences in response to phantom limb movement therapy. Disability and Rehabilitation, 33(23–24), 2186–2195. doi:10.3109/09638288.2011.563816.

    PubMed  Google Scholar 

  • Moseley, G. L. (2007). Using visual illusion to reduce at-level neuropathic pain in paraplegia. Pain, 130(3), 294–298. doi:10.1016/j.pain.2007.01.007.

    PubMed  Google Scholar 

  • Mulder, T. (2007). Motor imagery and action observation: cognitive tools for rehabilitation. Journal of Neural Transmission, 114(10), 1265–1278. doi:10.1007/s00702-007-0763-z.

    PubMed  PubMed Central  Google Scholar 

  • Muller, K., Butefisch, C. M., Seitz, R. J., & Homberg, V. (2007). Mental practice improves hand function after hemiparetic stroke. Restorative Neurology and Neuroscience, 25(5–6), 501–511.

    PubMed  Google Scholar 

  • Munzert, J., & Zentgraf, K. (2009). Motor imagery and its implications for understanding the motor system. Progress in Brain Research, 174, 219–229. doi:10.1016/S0079-6123(09)01318-1.

    PubMed  Google Scholar 

  • Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326. doi:10.1016/j.brainresrev.2008.12.024.

    PubMed  Google Scholar 

  • Nair, D. G., Fuchs, A., Burkart, S., Steinberg, F. L., & Kelso, J. A. (2005). Assessing recovery in middle cerebral artery stroke using functional MRI. Brain Injury, 19(13), 1165–1176. doi:10.1080/02699050500149858.

    CAS  PubMed  Google Scholar 

  • Ni Choisdealbha, A., Brady, N., & Maguinness, C. (2011). Differing roles for the dominant and non-dominant hands in the hand laterality task. Experimental Brain Research, 211(1), 73–85. doi:10.1007/s00221-011-2652-9.

    PubMed  Google Scholar 

  • Nico, D., Daprati, E., Rigal, F., Parsons, L., & Sirigu, A. (2004). Left and right hand recognition in upper limb amputees. Brain, 127(Pt 1), 120–132. doi:10.1093/brain/awh006.

    PubMed  Google Scholar 

  • Nikulin, V. V., Hohlefeld, F. U., Jacobs, A. M., & Curio, G. (2008). Quasi-movements: a novel motor-cognitive phenomenon. Neuropsychologia, 46(2), 727–742. doi:10.1016/j.neuropsychologia.2007.10.008.

    PubMed  Google Scholar 

  • Nyberg, L., Eriksson, J., Larsson, A., & Marklund, P. (2006). Learning by doing versus learning by thinking: an fMRI study of motor and mental training. Neuropsychologia, 44(5), 711–717. doi:10.1016/j.neuropsychologia.2005.08.006.

    PubMed  Google Scholar 

  • Olsson, C. J. (2012). Complex motor representations may not be preserved after complete spinal cord injury. Experimental Neurology, 236(1), 46–49. doi:10.1016/j.expneurol.2012.03.022.

    PubMed  Google Scholar 

  • Olsson, C. J., & Nyberg, L. (2010). Motor imagery: if you can’t do it, you won’t think it. Scandinavian Journal of Medicine and Science in Sports, 20(5), 711–715. doi:10.1111/j.1600-0838.2010.01101.x.

    PubMed  Google Scholar 

  • Page, S. J., Szaflarski, J. P., Eliassen, J. C., Pan, H., & Cramer, S. C. (2009). Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabilitation and Neural Repair, 23(4), 382–388. doi:10.1177/1545968308326427.

    PubMed  PubMed Central  Google Scholar 

  • Page, S. J., Dunning, K., Hermann, V., Leonard, A., & Levine, P. (2011a). Longer versus shorter mental practice sessions for affected upper extremity movement after stroke: a randomized controlled trial. Clinical Rehabilitation, 25(7), 627–637. doi:10.1177/0269215510395793.

    PubMed  PubMed Central  Google Scholar 

  • Page, S. J., Murray, C., Hermann, V., & Levine, P. (2011b). Retention of motor changes in chronic stroke survivors who were administered mental practice. Archives of Physical Medicine and Rehabilitation, 92(11), 1741–1745. doi:10.1016/j.apmr.2011.06.009.

    PubMed  PubMed Central  Google Scholar 

  • Papaxanthis, C., Pozzo, T., Skoura, X., & Schieppati, M. (2002). Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behavioural Brain Research, 134(1–2), 209–215.

    PubMed  Google Scholar 

  • Parsons, L. M. (1987a). Imagined spatial transformation of one’s body. Journal of Experimental Psychology: General, 116(2), 172–191.

    CAS  Google Scholar 

  • Parsons, L. M. (1987b). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19(2), 178–241.

    CAS  PubMed  Google Scholar 

  • Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709–730.

    CAS  PubMed  Google Scholar 

  • Pascual-Leone, A., Nguyet, D., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A., & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74(3), 1037–1045.

    CAS  PubMed  Google Scholar 

  • Pascual-Leone, A., Peris, M., Tormos, J. M., Pascual, A. P., & Catala, M. D. (1996). Reorganization of human cortical motor output maps following traumatic forearm amputation. Neuroreport, 7(13), 2068–2070.

    CAS  PubMed  Google Scholar 

  • Peterson, D. S., Pickett, K. A., & Earhart, G. M. (2012). Effects of levodopa on vividness of motor imagery in Parkinson disease. J Parkinsons Dis, 2(2), 127–133. doi:10.3233/jpd-2012-12077.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett, K. A., Peterson, D. S., & Earhart, G. M. (2012). Motor imagery of gait tasks in individuals with Parkinson disease. J Parkinsons Dis, 2(1), 19–22. doi:10.3233/jpd-2012-11045.

    PubMed  PubMed Central  Google Scholar 

  • Poliakoff, E. (2013). Representation of action in Parkinson’s disease: imagining, observing, and naming actions. Journal of Neuropsychology. doi:10.1111/jnp.12005.

    Google Scholar 

  • Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani, C., et al. (1996). Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. Journal of Neuroscience, 16(23), 7688–7698.

    CAS  PubMed  Google Scholar 

  • Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Raffin, E., Giraux, P., & Reilly, K. T. (2012a). The moving phantom: motor execution or motor imagery? Cortex, 48(6), 746–757. doi:10.1016/j.cortex.2011.02.003.

    PubMed  Google Scholar 

  • Raffin, E., Mattout, J., Reilly, K. T., & Giraux, P. (2012b). Disentangling motor execution from motor imagery with the phantom limb. Brain, 135(Pt 2), 582–595. doi:10.1093/brain/awr337.

    PubMed  Google Scholar 

  • Ramachandran, V. S., Brang, D., & McGeoch, P. D. (2010). Dynamic reorganization of referred sensations by movements of phantom limbs. Neuroreport, 21(10), 727–730. doi:10.1097/WNR.0b013e32833be9ab.

    PubMed  Google Scholar 

  • Randhawa, B., Harris, S., & Boyd, L. A. (2010). The Kinesthetic and Visual Imagery Questionnaire is a reliable tool for individuals with Parkinson disease. Journal of Neurologic Physical Therapy, 34(3), 161–167.

    PubMed  Google Scholar 

  • Ranganathan, V. K., Siemionow, V., Liu, J. Z., Sahgal, V., & Yue, G. H. (2004). From mental power to muscle power–gaining strength by using the mind. Neuropsychologia, 42(7), 944–956. doi:10.1016/j.neuropsychologia.2003.11.018.

    PubMed  Google Scholar 

  • Reis, J., Swayne, O. B., Vandermeeren, Y., Camus, M., Dimyan, M. A., Harris-Love, M., et al. (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Journal of Physiology, 586(2), 325–351. doi:10.1113/jphysiol.2007.144824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, R., Callow, N., Hardy, L., Markland, D., & Bringer, J. (2008). Movement imagery ability: development and assessment of a revised version of the Vividness of Movement Imagery Questionnaire. Journal of Sport & Exercise Psychology, 20, 200–221.

    Google Scholar 

  • Rosen, G., Hugdahl, K., Ersland, L., Lundervold, A., Smievoll, A. I., Barndon, R., et al. (2001). Different brain areas activated during imagery of painful and non-painful ‘finger movements’ in a subject with an amputated arm. Neurocase, 7(3), 255–260. doi:10.1093/neucas/7.3.255.

    CAS  PubMed  Google Scholar 

  • Rossini, P. M., & Pauri, F. (2000). Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas ‘plastic’ reorganisation. Brain Research. Brain Research Reviews, 33(2–3), 131–154.

    CAS  PubMed  Google Scholar 

  • Rossini, P. M., Rossi, S., Pasqualetti, P., & Tecchio, F. (1999). Corticospinal excitability modulation to hand muscles during movement imagery. Cerebral Cortex, 9(2), 161–167.

    CAS  PubMed  Google Scholar 

  • Rothwell, J. C. (1991). Physiological studies of electric and magnetic stimulation of the human brain. Electroencephalography and Clinical Neurophysiology. Supplement, 43, 29–35.

    CAS  PubMed  Google Scholar 

  • Rushby, J. A., Fisher, A. C., McDonald, S., Murphy, A., & Finnigan, S. (2013). Autonomic and neural correlates of dysregulated arousal in severe traumatic brain injury. International Journal of Psychophysiology, 89(3), 460–465. doi:10.1016/j.ijpsycho.2013.05.009.

    PubMed  Google Scholar 

  • Sabate, M., Gonzalez, B., & Rodriguez, M. (2004). Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization. Neuropsychologia, 42(8), 1041–1049. doi:10.1016/j.neuropsychologia.2003.12.015.

    PubMed  Google Scholar 

  • Sabate, M., Gonzalez, B., & Rodriguez, M. (2007). Adapting movement planning to motor impairments: the motor-scanning system. Neuropsychologia, 45(2), 378–386. doi:10.1016/j.neuropsychologia.2006.06.025.

    PubMed  Google Scholar 

  • Sabbah, P., Leveque, C., Pfefer, F., Nioche, C., Gay, S., Sarrazin, J. L., et al. (2000). Functional MR imaging and traumatic paraplegia: preliminary report. Journal of Neuroradiology, 27(4), 233–237.

    CAS  Google Scholar 

  • Sabbah, P., de, S. S., Leveque, C., Gay, S., Pfefer, F., Nioche, C., et al. (2002). Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. Journal of Neurotrauma, 19(1), 53–60. doi:10.1089/089771502753460231.

    CAS  PubMed  Google Scholar 

  • Samuel, M., Ceballos-Baumann, A. O., Boecker, H., & Brooks, D. J. (2001). Motor imagery in normal subjects and Parkinson’s disease patients: an H215O PET study. Neuroreport, 12(4), 821–828.

    CAS  PubMed  Google Scholar 

  • Sauvage, C., Jissendi, P., Seignan, S., Manto, M., & Habas, C. (2013). Brain areas involved in the control of speed during a motor sequence of the foot: Real movement versus mental imagery. Journal of Neuroradiology. doi:10.1016/j.neurad.2012.10.001.

    Google Scholar 

  • Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., et al. (2011). Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Medicine, 9, 75. doi:10.1186/1741-7015-9-75.

    PubMed  PubMed Central  Google Scholar 

  • Schuster, C., Butler, J., Andrews, B., Kischka, U., & Ettlin, T. (2012a). Comparison of embedded and added motor imagery training in patients after stroke: results of a randomised controlled pilot trial. Trials, 13, 11. doi:10.1186/1745-6215-13-11.

    PubMed  PubMed Central  Google Scholar 

  • Schuster, C., Glassel, A., Scheidhauer, A., Ettlin, T., & Butler, J. (2012b). Motor imagery experiences and use: asking patients after stroke where, when, what, why, and how they use imagery: a qualitative investigation. Stroke Res Treat, 2012, 503190. doi:10.1155/2012/503190.

    PubMed  PubMed Central  Google Scholar 

  • Schuster, C., Lussi, A., Wirth, B., & Ettlin, T. (2012c). Two assessments to evaluate imagery ability: translation, test-retest reliability and concurrent validity of the German KVIQ and Imaprax. BMC Medical Research Methodology, 12(1), 127. doi:10.1186/1471-2288-12-127.

    PubMed  PubMed Central  Google Scholar 

  • Schwoebel, J., Boronat, C. B., & Branch Coslett, H. (2002). The man who executed “imagined” movements: evidence for dissociable components of the body schema. Brain and Cognition, 50(1), 1–16. doi:10.1016/s0278-2626(02)00005-2.

    PubMed  Google Scholar 

  • Sharma, N., Pomeroy, V. M., & Baron, J. C. (2006). Motor imagery: a backdoor to the motor system after stroke? Stroke, 37(7), 1941–1952. doi:10.1161/01.STR.0000226902.43357.fc.

    PubMed  Google Scholar 

  • Sharma, N., Jones, P. S., Carpenter, T. A., & Baron, J. C. (2008). Mapping the involvement of BA 4a and 4p during Motor Imagery. NeuroImage, 41(1), 92–99. doi:10.1016/j.neuroimage.2008.02.009.

    PubMed  Google Scholar 

  • Sharma, N., Baron, J. C., & Rowe, J. B. (2009a). Motor imagery after stroke: relating outcome to motor network connectivity. Annals of Neurology, 66(5), 604–616. doi:10.1002/ana.21810.

    PubMed  PubMed Central  Google Scholar 

  • Sharma, N., Simmons, L. H., Jones, P. S., Day, D. J., Carpenter, T. A., Pomeroy, V. M., et al. (2009b). Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke, 40(4), 1315–1324. doi:10.1161/strokeaha.108.525766.

    PubMed  Google Scholar 

  • Shaw, W. A. (1938). The distribution of muscular action potentials during imaging. Psychological Record, 2, 195–216.

    Google Scholar 

  • Sheehan, P. W. (1967). A shortened form of Bett’s questionnaire upon mental imagery. Journal of Clinical Psychology, 23, 386–389.

    CAS  PubMed  Google Scholar 

  • Shepard, R. N., & Cooper, L. A. (1986). Mental images and their transformations. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Shields, S. A., MacDowell, K. A., Fairchild, S. B., & Campbell, M. L. (1987). Is mediation of sweating cholinergic, adrenergic, or both? A comment on the literature. Psychophysiology, 24(3), 312–319.

    CAS  PubMed  Google Scholar 

  • Simmons, L., Sharma, N., Baron, J. C., & Pomeroy, V. M. (2008). Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects. Neurorehabilitation and Neural Repair, 22(5), 458–467. doi:10.1177/1545968308315597.

    PubMed  Google Scholar 

  • Sirigu, A., & Duhamel, J. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. J Cognit Neurosci, 13(7), 910–919.

    CAS  Google Scholar 

  • Sirigu, A., Cohen, L., Duhamel, J. R., Pillon, B., Dubois, B., Agid, Y., et al. (1995). Congruent unilateral impairments for real and imagined hand movements. Neuroreport, 6(7), 997–1001.

    CAS  PubMed  Google Scholar 

  • Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., & Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273(5281), 1564–1568.

    CAS  PubMed  Google Scholar 

  • Snijders, A. H., Leunissen, I., Bakker, M., Overeem, S., Helmich, R. C., Bloem, B. R., et al. (2011). Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain, 134(Pt 1), 59–72. doi:10.1093/brain/awq324.

    PubMed  Google Scholar 

  • Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. L. (2004). Fine modulation in network activation during motor execution and motor imagery. Cerebral Cortex, 14(11), 1246–1255. doi:10.1093/cercor/bhh086.

    PubMed  Google Scholar 

  • Stephan, K. M., & Frackowiak, R. S. (1996). Motor imagery–anatomical representation and electrophysiological characteristics. Neurochemical Research, 21(9), 1105–1116.

    CAS  PubMed  Google Scholar 

  • Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A. O., Frith, C. D., et al. (1995). Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology, 73(1), 373–386.

    CAS  PubMed  Google Scholar 

  • Stevens, J. A., & Stoykov, M. E. (2003). Using motor imagery in the rehabilitation of hemiparesis. Archives of Physical Medicine and Rehabilitation, 84(7), 1090–1092.

    PubMed  Google Scholar 

  • Stinear, C. M. (2010). Corticospinal facilitation during motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (pp. 47–61). New York, NY: Oxford University Press.

    Google Scholar 

  • Stinear, C. M., & Byblow, W. D. (2003). Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clinical Neurophysiology, 114(5), 909–914.

    PubMed  Google Scholar 

  • Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 168(1–2), 157–164. doi:10.1007/s00221-005-0078-y.

    PubMed  Google Scholar 

  • Stinear, C. M., Fleming, M. K., Barber, P. A., & Byblow, W. D. (2007). Lateralization of motor imagery following stroke. Clinical Neurophysiology, 118(8), 1794–1801. doi:10.1016/j.clinph.2007.05.008.

    PubMed  Google Scholar 

  • Subramanian, L., Hindle, J. V., Johnston, S., Roberts, M. V., Husain, M., Goebel, R., et al. (2011). Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. Journal of Neuroscience, 31(45), 16309–16317. doi:10.1523/jneurosci.3498-11.2011.

    CAS  PubMed  Google Scholar 

  • Sun, L., Yin, D., Zhu, Y., Fan, M., Zang, L., Wu, Y., et al. (2013). Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study. Neuroradiology, 55(7), 913–925. doi:10.1007/s00234-013-1188-z.

    PubMed  Google Scholar 

  • Szameitat, A. J., Shen, S., Conforto, A., & Sterr, A. (2012). Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. NeuroImage, 62(1), 266–280. doi:10.1016/j.neuroimage.2012.05.009.

    PubMed  Google Scholar 

  • Takemi, M., Masakado, Y., Liu, M., & Ushiba, J. (2013). Event-related desynchronization reflects down-regulation of intracortical inhibition in human primary motor cortex. Journal of Neurophysiology. doi:10.1152/jn.01092.2012.

    PubMed  Google Scholar 

  • Tamaki, M., Huang, T. R., Yotsumoto, Y., Hamalainen, M., Lin, F. H., Nanez, J. E., Sr., et al. (2013). Enhanced spontaneous oscillations in the supplementary motor area are associated with sleep-dependent offline learning of finger-tapping motor-sequence task. Journal of Neuroscience, 33(34), 13894–13902. doi:10.1523/jneurosci.1198-13.2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thobois, S., Dominey, P. F., Decety, J., Pollak, P. P., Gregoire, M. C., Le Bars, P. D., et al. (2000). Motor imagery in normal subjects and in asymmetrical Parkinson’s disease: a PET study. Neurology, 55(7), 996–1002.

    CAS  PubMed  Google Scholar 

  • Thobois, S., Dominey, P., Fraix, V., Mertens, P., Guenot, M., Zimmer, L., et al. (2002). Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson’s disease : a PET study. Journal of Neurology, 249(12), 1689–1698. doi:10.1007/s00415-002-0906-y.

    PubMed  Google Scholar 

  • Tomasino, B., Ida Rumiati, R., & Arrigo Umiltà, C. (2003). Selective deficit of motor imagery as tapped by a left–right decision of visually presented hands. Brain and Cognition, 53(2), 376–380. doi:10.1016/s0278-2626(03)00147-7.

    PubMed  Google Scholar 

  • Tomberg, C., & Caramia, M. D. (1991). Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology, 81(4), 319–322.

    CAS  PubMed  Google Scholar 

  • Tremblay, F., Leonard, G., & Tremblay, L. (2008). Corticomotor facilitation associated with observation and imagery of hand actions is impaired in Parkinson’s disease. Experimental Brain Research, 185(2), 249–257. doi:10.1007/s00221-007-1150-6.

    PubMed  Google Scholar 

  • van der Meulen, M., Allali, G., Rieger, S. W., Assal, F., & Vuilleumier, P. (2012). The influence of individual motor imagery ability on cerebral recruitment during gait imagery. Human Brain Mapping. doi:10.1002/hbm.22192.

    PubMed  Google Scholar 

  • van Nuenen, B. F., Helmich, R. C., Buenen, N., van de Warrenburg, B. P., Bloem, B. R., & Toni, I. (2012). Compensatory activity in the extrastriate body area of Parkinson’s disease patients. Journal of Neuroscience, 32(28), 9546–9553. doi:10.1523/JNEUROSCI.0335-12.2012.

    PubMed  Google Scholar 

  • Vromen, A., Verbunt, J. A., Rasquin, S., & Wade, D. T. (2011). Motor imagery in patients with a right hemisphere stroke and unilateral neglect. Brain Injury, 25(4), 387–393. doi:10.3109/02699052.2011.558041.

    PubMed  Google Scholar 

  • Wai, Y.-Y., Wang, J.-J., Weng, Y.-H., Lin, W.-Y., Ma, H.-K., Ng, S.-H., et al. (2012). Cortical involvement in a gait-related imagery task: comparison between Parkinson’s disease and normal aging. Parkinsonism & Related Disorders, 18(5), 537–542. doi:10.1016/j.parkreldis.2012.02.004.

    Google Scholar 

  • Warner, L., & McNeill, M. E. (1988). Mental imagery and its potential for physical therapy. Physical Therapy, 68(4), 516–521.

    CAS  PubMed  Google Scholar 

  • Wehner, T., Vogt, S., & Stadler, M. (1984). Task-specific EMG-characteristics during mental training. Psychological Research, 46(4), 389–401.

    CAS  PubMed  Google Scholar 

  • Welfringer, A., Leifert-Fiebach, G., Babinsky, R., & Brandt, T. (2011). Visuomotor imagery as a new tool in the rehabilitation of neglect: a randomised controlled study of feasibility and efficacy. Disability and Rehabilitation, 33(21–22), 2033–2043. doi:10.3109/09638288.2011.556208.

    PubMed  Google Scholar 

  • Williams, J., Pearce, A. J., Loporto, M., Morris, T., & Holmes, P. S. (2012). The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behavioural Brain Research, 226(2), 369–375. doi:10.1016/j.bbr.2011.09.014.

    PubMed  Google Scholar 

  • Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–732.

    CAS  PubMed  Google Scholar 

  • Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(Suppl), 1212–1217. doi:10.1038/81497.

    CAS  PubMed  Google Scholar 

  • Wondrusch, C., & Schuster, C. (2013). A standardized motor imagery introduction program (MIIP) for neuro-rehabilitation: development and evaluation. Front Hum Neurosci, 7, doi:10.3389/fnhum.2013.00477.

  • Wrigley, P. J., Press, S. R., Gustin, S. M., Macefield, V. G., Gandevia, S. C., Cousins, M. J., et al. (2009). Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain, 141(1–2), 52–59. doi:10.1016/j.pain.2008.10.007.

    CAS  PubMed  Google Scholar 

  • Wu, A. J., Hermann, V., Ying, J., & Page, S. J. (2010). Chronometry of mentally versus physically practiced tasks in people with stroke. American Journal of Occupational Therapy, 64(6), 929–934.

    PubMed  PubMed Central  Google Scholar 

  • Yaguez, L., Canavan, A. G., Lange, H. W., & Homberg, V. (1999). Motor learning by imagery is differentially affected in Parkinson’s and Huntington’s diseases. Behavioural Brain Research, 102(1–2), 115–127.

    CAS  PubMed  Google Scholar 

  • Yan, J., Guo, X., Jin, Z., Sun, J., Shen, L., & Tong, S. (2012). Cognitive alterations in motor imagery process after left hemispheric ischemic stroke. PLoS One, 7(8), e42922. doi:10.1371/journal.pone.0042922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz, S. K., Turkoglu, S. A., Yildiz, N., Ozturk, A., & Tore, F. (2007). Sympathetic skin responses of the face and neck evoked by electrical stimulation. Autonomic Neuroscience, 134(1), 85–91.

    PubMed  Google Scholar 

  • Zhang, H., Xu, L., Wang, S., Xie, B., Guo, J., Long, Z., et al. (2011). Behavioral improvements and brain functional alterations by motor imagery training. Brain Research, 1407, 38–46. doi:10.1016/j.brainres.2011.06.038.

    CAS  PubMed  Google Scholar 

  • Zhang, H., Xu, L., Zhang, R., Hui, M., Long, Z., Zhao, X., et al. (2012). Parallel alterations of functional connectivity during execution and imagination after motor imagery learning. PLoS One, 7(5), e36052. doi:10.1371/journal.pone.0036052.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Audrey Fournié for her technical assistance in data collection.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Guillot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOC 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rienzo, F., Collet, C., Hoyek, N. et al. Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations. Neuropsychol Rev 24, 116–147 (2014). https://doi.org/10.1007/s11065-014-9257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-014-9257-6

Keywords

Navigation