Skip to main content
Log in

Effect of Motion Trajectory on the Lateralization of Auditory Evoked Responses

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Processing of acoustic space in the human auditory system implicates the interaction of the left and right hemispheres of the brain. In this study, we investigated the influence of the position and motion direction of sound stimuli on the amplitude and latency of N1, P2, MMN, and P3a components of auditory evoked potentials in the left and right brain hemispheres. The data suggest that functional asymmetry of the N1P2 complex and difference waveforms can be described as weak contralateral dominance. Deviants moving from the lateral positions evoked later P3a components than those moving from the midline, which is consistent with the concept of higher localization accuracy in the frontal part of the acoustic space. The motion direction affected the MMN and P3a latency: the centrifugal deviants produced earlier MMN and P3a responses than the centripetal deviants. This could result from a stronger orienting reaction caused by stimuli moving from the center towards the periphery as compared with the opposite direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kandel, E.R., The neurobiology of behavior, in Principles of Neural Sciences, Kandel, E.R., Schwartz, J.H., and Jessel, T.M., Eds., New York: McGraw-Hill, 2000, 4th ed.

    Google Scholar 

  2. Vulliemoz, S., Raineteau, O., and Jabaudon, D., Reaching beyond the midline: why are human brains cross wired? Lancet Neurol., 2005, vol. 4, no. 2, p. 87.

    PubMed  Google Scholar 

  3. Phillips, D.P. and Brugge, J.F., Progress in neurophysiology of sound localization, Annu. Rev. Psychol., 1985, vol. 36, p. 245.

    CAS  PubMed  Google Scholar 

  4. McAlpine, D., Jiang, D., and Palmer, A.R., A neural code for low frequency sound localization in mammals, Nat. Neurosci., 2001, vol. 4, no. 4, p. 396.

    CAS  PubMed  Google Scholar 

  5. Hart, H.C., Palmer, A.R., and Hall, D.A., Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties, Hum. Brain Mapp., 2004, vol. 21, no. 3, p. 178.

    PubMed  PubMed Central  Google Scholar 

  6. Spierer, L., Bellmann-Thiran, A., Maeder, Ph., et al., Hemispheric competence for auditory spatial representation, Brain, 2009, vol. 132, no. 7, p. 1953.

    PubMed  Google Scholar 

  7. Fujiki, N., Riederer, K.A.J., Jousmäki, V., et al., Human cortical representation of virtual auditory space: differences between sound azimuth and elevation, Eur. J. Neurosci., 2002, vol. 16, no. 11, p. 2207.

    PubMed  Google Scholar 

  8. Palomäki, K., Alku, P., Mäkinen, V., et al., Sound localization in the human brain: neuromagnetic observations, Neuroreport, 2000, vol. 11, no. 7, p. 1535.

    PubMed  Google Scholar 

  9. Palomäki, K.J., Tiitinen, H., Mäkinen, V., et al., Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques, Cognit. Brain Res., 2005, vol. 24, no. 3, p. 364.

    Google Scholar 

  10. Krumbholz, K., Schonwiesner, M., von Cramon, D.Y., et al., Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe, Cereb. Cortex, 2005, vol. 15, no. 3, p. 317.

    PubMed  Google Scholar 

  11. Getzmann, S., Effect of auditory motion velocity on reaction time and cortical processes, Neuropsychologia, 2009, vol. 47, no. 12, p. 2625.

    PubMed  Google Scholar 

  12. Getzmann, S., Auditory motion perception: onset position and motion direction are encoded in discrete processing stages, Eur. J. Neurosci., 2011, vol. 33, no. 7, p. 1339.

    PubMed  Google Scholar 

  13. Tanaka, H., Hachisuka, K., and Ogata, H., Sound lateralization in patients with left or right cerebral hemispheric lesions: relation with unilateral visuospatial neglect, J. Neurol. Neurosurg. Psychiatry, 1999, vol. 67, no. 4, p. 481.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zatorre, R.J., Mondor, T.A., and Evans, A.C., Auditory attention to space and frequency activates similar cerebral systems, NeuroImage, 1999, vol. 10, no. 5, p. 544.

    CAS  PubMed  Google Scholar 

  15. Brunetti, M., Belardinelli, P., Caulo, M., et al., Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study, Hum. Brain Mapp., 2005, vol. 26, no. 4, p. 251.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tiitinen, H., Salminen, N.H., Palomaki, K.J., et al., Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex, Neurosci. Lett., 2006, vol. 396, no. 1, p. 17.

    CAS  PubMed  Google Scholar 

  17. Baumgart, F., Gaschler-Markefski, B., Woldorff, M.G., et al., A movement-sensitive area in auditory cortex, Nature, 1999, vol. 400, no. 6746, p. 724.

    CAS  PubMed  Google Scholar 

  18. Griffiths, T.D., Rees, G., Rees, A., et al., Right parietal cortex is involved in the perception of sound movement in humans, Nat. Neurosci., 1998, vol. 1, no. 1, p. 74.

    CAS  PubMed  Google Scholar 

  19. Krumbholz, K., Hewson-Stoate, N., and Schönwiesner, M., Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices, J. Neurophysiol., 2007, vol. 97, no. 2, p. 1649.

    PubMed  Google Scholar 

  20. Briley, P.M., Kitterick, P.T., and Summerfield, A.Q., Evidence for opponent process analysis of sound source location in humans, J. Assoc. Res. Otolaryngol., 2013, vol. 14, no. 1, p. 83.

    PubMed  Google Scholar 

  21. Ahveninen, J., Kopco, N., and Jääskeläinen, I.P., Psychophysics and neuronal bases of sound localization in humans, Hear. Res., 2014, vol. 307, p. 86.

    PubMed  Google Scholar 

  22. Mesulam, M.M., Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events, Philos. Trans. R. Soc., B, 1999, vol. 354, no. 1387, p. 1325.

  23. Teshiba, T.M., Ling, J., Ruhl, D.A., et al., Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning, Cereb. Cortex, 2013, vol. 23, no. 3, p. 560.

    PubMed  Google Scholar 

  24. Deouell, L.Y., Bentin, S., and Giard, M.H., Mismatch negativity in dichotic listening: Evidence for interhemispheric differences and multiple generators, Psychophysiology, 1998, vol. 35, no. 4, p. 355.

    CAS  PubMed  Google Scholar 

  25. Kaiser, J., Lutzenberger, W., Preissl, H., et al., Right-hemisphere dominance for the processing of sound-source lateralization, J. Neurosci., 2000, vol. 20, no. 17, p. 6631.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schonwiesner, M., Krumbholz, K., Rubsamen, R., et al., Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex, Cereb. Cortex, 2007, vol. 17, no. 2, p. 492.

    PubMed  Google Scholar 

  27. Näätänen, R., The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function, Behav. Brain Sci., 1990, vol. 13, no. 2, p. 201.

    Google Scholar 

  28. Kaiser, J. and Lutzenberger, W., Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans, Neurosci. Lett., 2001, vol. 314, nos. 1–2, p. 17.

    CAS  PubMed  Google Scholar 

  29. Näätänen, R. Paavilainen, P., Rinne, T., et al., The mismatch negativity (MMN) in basic research of central auditory processing: a review, Clin. Neurophysiol., 2007, vol. 118, no. 12, p. 2544.

    PubMed  Google Scholar 

  30. Nager, W., Kohlmetz, C., Joppich, G., et al., Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in humans, Neurosci. Lett., 2003, vol. 344, no. 3, p. 181.

    CAS  PubMed  Google Scholar 

  31. Richter, N., Schröger, E., and Rübsamen, R., Hemispheric specialization during discrimination of sound sources reflected by MMN, Neuropsychologia, 2009, vol. 47, no. 12, p. 2652.

    PubMed  Google Scholar 

  32. Takegata, R., Huotilainen, M., Rinne, T., et al., Changes in acoustic features and their conjunctions are processed by separate neuronal populations, Neuroreport, 2001, vol. 12, no. 3, p. 525.

    CAS  PubMed  Google Scholar 

  33. Tata, M.S. and Ward, L.M., Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway, Exp. Brain Res., 2005, vol. 167, no. 3, p. 481.

    PubMed  Google Scholar 

  34. Vaitulevich, S.F. and Shestopalova, L.B., Interhemisphere asymmetry of auditory evoked potentials in humans and mismatch negativity during sound source localization, Neurosci. Behav. Physiol., 2010, vol. 40, no. 6, p. 629.

    CAS  PubMed  Google Scholar 

  35. Vaitulevich, S.F., Petropavlovskaya, E.A., Shestopalova, L.B., et al., Interhemispheric asymmetry of the total activity of the human brain in the localization of the sound source, Sens. Sist., 2015, vol. 29, no. 2, p. 148.

    Google Scholar 

  36. Altman, J.A., Vaitulevich, S.Ph., Shestopalova, L.B., et al., How does mismatch negativity reflect auditory motion? Hear. Res., 2010, vol. 268, nos. 1–2, p. 194.

    CAS  PubMed  Google Scholar 

  37. Shestopalova, L.B., Petropavlovskaya, E.A., Vaitulevich, S.F., et al., Topography of activity evoked in the human brain during discrimination of moving sound stimuli, Neurosci. Behav. Physiol., 2017, vol. 47, no. 1, p. 83.

    Google Scholar 

  38. Shestopalova, L.B., Petropavlovskaia, E.A., Vaitulevich, S.Ph., et al., Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion, Neuropsychologia, 2016, vol. 91, p. 465.

    CAS  PubMed  Google Scholar 

  39. Magezi, D.A. and Krumbholz, K., Evidence for opponent-channel coding of interaural time differences in human auditory cortex, J. Neurophysiol., 2010, vol. 104, no. 4, p. 1997.

    PubMed  PubMed Central  Google Scholar 

  40. Petropavlovskaya, E.A., Shestopalova, L.B., and Vaitulevich, S.F., Predictive ability of the auditory system during gradual and abrupt movements of low-intensity sound images, Neurosci. Behav. Physiol., 2012, vol. 42, no. 8, p. 911.

    Google Scholar 

  41. Delorme, A., Sejnowski, T., and Makeig, S., Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, NeuroImage, 2007, vol. 34, no. 4, p. 1443.

    PubMed  Google Scholar 

  42. Barcelo, F., Escera, C., Corral, M.J., et al., Task switching and novelty processing activate a common neural network for cognitive control, J. Cognit. Neu-rosci., 2006, vol. 18, no. 10, p. 1734.

    Google Scholar 

  43. Friedman, D., Cycowicz, Y.M., and Gaeta, H., The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty, Neurosci. Biobehav. Res., 2001, vol. 25, no. 4, p. 355.

    CAS  Google Scholar 

  44. Rinne, T., Särkkä, A., Degerman, A., et al., Two separate mechanisms underlie auditory change detection and involuntary control of attention, Brain Res., 2006, vol. 1077, no. 1, p. 135.

    CAS  PubMed  Google Scholar 

  45. Horváth, J. and Winkler, I., Distraction in a continuous-stimulation detection task, Biol. Psychol., 2010, vol. 83, no. 3, p. 229.

    PubMed  Google Scholar 

  46. Al’tman, Ya.A., Lokalizatsiya dvizhushchegosya istochnika zvuka (Localization of Moving Sound Source), Leningrad: Nauka, 1983.

  47. Al’tman, Ya.A., Prostranstvennyi slukh (Spatial Hearing), St. Petersburg: Inst. Fiziol. im. I.P. Pavlova, Ross. Akad. Nauk, 2011.

  48. Coull, J.T., Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology, Prog. Neurobiol., 1998, vol. 55, p. 343.

    CAS  PubMed  Google Scholar 

  49. Polich, J., Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 2007, vol. 118, no. 10, p. 2128.

    PubMed  PubMed Central  Google Scholar 

  50. Ball, K. and Sekuler, R., Human vision favors centrifugal motion, Perception, 1980, vol. 9, no. 3, p. 317.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Basic Research Program for State Academies for 2013–2020 (GP-14, section 63.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Petropavlovskaia.

Ethics declarations

Conflict of interest. The authors declare no explicit and potential conflicts of interest associated with the publication of this article.

Statement of compliance with standards of research involving humans as subjects. All studies were conducted in accordance with the principles of biomedical ethics set out in the 1964 Helsinki Declaration and its subsequent amendments and approved by the Ethics Committee of the St. Petersburg State University (Saint-Petersburg). Each study participant provided a voluntary written informed consent signed after explanations of potential risks and benefits as well as the nature of the forthcoming investigations.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petropavlovskaia, E.A., Kanakhina, L.A. & Shestopalova, L.B. Effect of Motion Trajectory on the Lateralization of Auditory Evoked Responses. Hum Physiol 46, 351–365 (2020). https://doi.org/10.1134/S0362119720020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720020127

Keywords:

Navigation