Skip to main content
Log in

Epac Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part 1: The Role of Epac Proteins in the Physiological and Pathological Processes of the Vasculature

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The article contains a review of published data on the contribution of Epac proteins to the physiology and pathological processes of the cardiovascular system. Part 1 of the review is focused on the structure of regulatory Epac proteins and their role in the regulation of vascular tone and permeability, angiogenesis, proliferation of endotheliocytes and smooth myocytes, and pathogenesis of vascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Rall, T.W. and Sutherland, E.W., Formation of a cyclic adenine ribonucleotide by tissue particles, J. Biol. Chem., 1958, vol. 232, no. 2, p. 1065.

    CAS  PubMed  Google Scholar 

  2. Walsh, D.A., Perkins, J.P., and Krebs, E.G., An adenosine 3'5'-monophosphate-dependent protein kinase from rabbit skeletal muscle, J. Biol. Chem., 1968, vol. 243, no. 13, p. 3763.

    CAS  PubMed  Google Scholar 

  3. Lymperopoulos, A., Rengo, G., and Koch, W.J., Adrenergic nervous system in heart failure: pathophysiology and therapy, Circ. Res., 2013, vol. 113, no. 6, p. 739.

    Article  CAS  PubMed  Google Scholar 

  4. Sands, W.A. and Palmer, T.M., Regulating gene transcription in response to cyclic AMP elevation, Cell Signaling, 2008, vol. 20, no. 3, p. 460.

    Article  CAS  Google Scholar 

  5. Chin, K.V., Yang, W.L., Ravatn, R., et al., Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling, Ann. N.Y. Acad. Sci., 2002, vol. 968, p. 49.

    Article  CAS  PubMed  Google Scholar 

  6. Biel, M. and Michalakis, S., Cyclic nucleotide-gated channel, Handb. Exp. Pharmacol., 2009, vol. 191, p. 111.

    Article  CAS  Google Scholar 

  7. Renström, E., Eliasson, L., and Rorsman, P., Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cell, J. Physiol., 1997, vol. 502, no. 1, p. 105.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anciaux, K., van Dommelen, K., Nicolai, S., et al., Cyclic AMP-mediated induction of the glial fibrillary acidic protein is independent of protein kinase A activation in rat C6 glioma, J. Neurosci. Res., 1997, vol. 48, no. 4, p. 324.

    Article  CAS  PubMed  Google Scholar 

  9. Kawasaki, H., Springett, G.M., Mochizuki, N., et al., A family of cAMP-binding proteins that directly activate Rap1, Science, 1998, vol. 282, no. 5397, p. 2275.

    Article  CAS  PubMed  Google Scholar 

  10. de Rooij, J., Zwartkruis, F.J., Verheijen, M.H., et al., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP, Nature, 1998, vol. 396, no. 6710, p. 474.

    Article  CAS  PubMed  Google Scholar 

  11. Aronoff, D.M., Canetti, C., Serezani, C.H., et al., Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1, J. Immunol., 2005, vol. 174, no. 2, p. 595.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, X., Ji, Z., Tsalkova, T., and Mei, F., Epac and PKA: a tale of two intracellular cAMP receptors, Acta Biochim. Biophys. Sin., 2008, vol. 40, no. 7, p. 651.

    Article  CAS  PubMed  Google Scholar 

  13. Muñoz-Llancao, P., Henríquez, D.R., Wilson, C., et al., Exchange protein directly activated by cAMP (EPAC) regulates neuronal polarization through Rap1B, J. Neurosci., 2015, vol. 35, no. 32, p. 11315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Breckler, M., Berthouze, M., Laurent, A.C., et al., Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications, Cell. Signaling, 2011, vol. 23, no. 8, p. 1257.

    Article  CAS  Google Scholar 

  15. Krähling, A.M., Alvarez, L., Debowski, K., et al., CRIS-a novel cAMP-binding protein controlling spermiogenesis and the development of flagellar bending, PLoS Genet., 2013, vol. 9, no. 12, p. e1003960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schindler, R.F. and Brand, T., The Popeye domain containing protein family—A novel class of cAMP effectors with important functions in multiple tissues, Prog. Biophys. Mol. Biol., 2016, vol. 120, nos. 1–3, p. 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banerjee, U. and Cheng, X., Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: structure, function, and therapeutics, Gene, 2015, vol. 570, no. 2, p. 157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Rooij, J., Rehmann, H., van Triest, M., et al., Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs, J. Biol. Chem., 2000, vol. 275, no. 27, p. 20829.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, M., Dekker, F.J., and Maarsingh, H., Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions, Pharmacol. Rev., 2013, vol. 65, no. 2, p. 670.

    Article  PubMed  CAS  Google Scholar 

  20. Sugawara, K., Shibasaki, T., Takahashi, H., and Seino, S., Structure and functional roles of Epac2 (Rapgef4), Gene, 2016, vol. 575, no. 2, p. 577.

    Article  CAS  PubMed  Google Scholar 

  21. Roberts, O.L. and Dart, C., cAMP signaling in the vasculature: the role of Epac (exchange protein directly activated by cAMP), Biochem. Soc. Trans., 2014, vol. 42, no. 1, p. 89.

    Article  CAS  PubMed  Google Scholar 

  22. Dao, K.K., Teigen, K., Kopperud, R., et al., Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition, J. Biol. Chem., 2006, vol. 281, no. 30, p. 21500.

    Article  CAS  PubMed  Google Scholar 

  23. Lezoualc'h, F., Fazal, L., Laudette, M., and Conte, C., Cyclic AMP sensor EPAC proteins and their role in cardiovascular function and disease, Circ. Res., 2016, vol. 118, no. 5, p. 881.

    Article  CAS  PubMed  Google Scholar 

  24. Borland, G., Gupta, M., Magiera, M.M., et al., Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting, Mol. Pharmacol., 2006, vol. 69, no. 1, p. 374.

    Article  CAS  PubMed  Google Scholar 

  25. Gloerich, M., Ponsioen, B., Vliem, M.J., et al., Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins, Mol. Cell. Biol., 2010, vol. 30, no. 22, p. 5421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rehmann, H., Arias-Palomo, E., Hadders, M.A., et al., Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B, Nature, 2008, vol. 455, no. 7209, p. 124.

    Article  CAS  PubMed  Google Scholar 

  27. Rehmann, H., Rueppel, A., Bos, J.L., and Wittinghofer, A., Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac, J. Biol. Chem., 2003, vol. 278, no. 26, p. 23508.

    Article  CAS  PubMed  Google Scholar 

  28. Fujita, T., Umemura, M., Yokoyama, U., et al., The role of Epac in the heart, Cell. Mol. Life Sci., 2017, vol. 74, no. 4, p. 591.

    Article  CAS  PubMed  Google Scholar 

  29. Nikolaev, V.O., Bunemann, M., Hein, L., et al., Novel single chain cAMP sensors for receptor-induced signal propagation, J. Biol. Chem., 2004, vol. 279, no. 36, p. 37215.

    Article  CAS  PubMed  Google Scholar 

  30. Wong, W. and Scott, J.D., AKAP signaling complexes: focal points in space and time, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, no. 12, p. 959.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, L.C., Maurice, D.H., and Baillie, G.S., Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease, Future Med. Chem., 2013, vol. 5, no. 4, p. 451.

    Article  CAS  PubMed  Google Scholar 

  32. Garg, J., Feng, Y.X., Jansen, S.R., et al., Catecholamines facilitate VEGF-dependent angiogenesis via β2-adrenoceptor-induced Epac1 and PKA activation, Oncotarget, 2017, vol. 8, no. 27, p. 44732.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Belacel-Ouari, M., Zhang, L., Hubert, F., et al., Influence of cell confluence on the cAMP signalling pathway in vascular smooth muscle cells, Cell Signaling, 2017, vol. 35, p. 118.

    Article  CAS  Google Scholar 

  34. Kato, Y., Yokoyama, U., Yanai, C., et al., Epac1 deficiency attenuated vascular smooth muscle cell migration and neointimal formation, Arterioscler., Thromb., Vasc. Biol., 2015, vol. 35, no. 12, p. 2617.

    Article  CAS  Google Scholar 

  35. Cullere, X., Shaw, S.K., Andersson, L., et al., Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase, Blood, 2005, vol. 105, no. 5, p. 1950.

    Article  CAS  PubMed  Google Scholar 

  36. Rodrigues, S.F. and Granger, D.N., Blood cells and endothelial barrier function, Tissue Barriers, 2015, vol. 3, nos. 1–2, p. e978720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sayner, S.L., Alexeyev, M., Dessauer, C.W., and Stevens, T., Soluble adenylyl cyclase reveals the significance of cAMP compartmentation on pulmonary microvascular endothelial cell barrier, Circ. Res., 2006, vol. 98, no. 5, p. 675.

    Article  CAS  PubMed  Google Scholar 

  38. Pannekoek, W.J., Post, A., and Bos, J.L., Rap1 signaling in endothelial barrier control, Cell Adhes. Migr., 2014, vol. 8, no. 2, p. 100.

    Article  Google Scholar 

  39. Béraud-Dufour, S., Gautier, R., Albiges-Rizo, C., et al., Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1, FEBS J., 2007, vol. 274, no. 21, p. 5518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sehrawat, S., Ernandez, T., Cullere, X., et al., AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties, Blood, 2011, vol. 117, no. 2, p. 708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Post, A., Pannekoek, W.J., Ponsioen, B., et al., Rap1 spatially controls ArhGAP29 to inhibit Rho signaling during endothelial barrier regulation, Mol. Cell Biol., 2015, vol. 35, no. 14, p. 2495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parnell, E., Smith, B.O., Palmer, T.M., et al., Regulation of the inflammatory response of vascular endothelial cells by EPAC1, Br. J. Pharmacol., 2012, vol. 166, no. 2, p. 434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sands, W.A., Woolson, H.D., Milne, G.R., et al., Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells, Mol. Cell Biol., 2006, vol. 26, no. 17, p. 6333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vestweber, D., VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation, Arterioscler., Thromb., Vasc. Biol., 2008, vol. 28, no. 2, p. 223.

    Article  CAS  Google Scholar 

  45. Kooistra, M.R., Corada, M., Dejana, E., and Bos, J.L., Epac1 regulates integrity of endothelial cell junctions through VE-cadherin, FEBS Lett., 2005, vol. 579, no. 22, p. 4966.

    Article  CAS  PubMed  Google Scholar 

  46. Rampersad, S.N., Ovens, J.D., Huston, E., et al., Cyclic AMP phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability, J. Biol. Chem., 2010, vol. 285, no. 44, p. 33614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korayem, A.H., Mujica, P.E., Aramoto, H., et al., Endothelial cAMP deactivates ischemia-reperfusion-induced microvascular hyperpermeability via Rap1-mediated mechanisms, Am. J. Physiol. Heart Circ. Physiol., 2017, vol. 313, no. 1, p. H179.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kopperud, R.K., Rygh, C.B., Karlsen, T.V., et al., Increased microvascular permeability in mice lacking Epac1 (Rapgef3), Acta Physiol., 2017, vol. 219, no. 2, p. 441.

    Article  CAS  Google Scholar 

  49. Birukova, A.A., Zagranichnaya, T., Fu, P., et al., Prostaglandins PGE(2) and PGI(2) promote endothelial enhancement via PKA- and Epac1/Rap1-dependent Rac activation, Exp. Cell Res., 2007, vol. 313, no. 11, p. 2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong, J., Doebele, R.C., Lingen, M.W., et al., Anthrax edema toxin inhibits endothelial cell chemotaxis via Epac and Rap1, J. Biol. Chem., 2007, vol. 282, no. 27, p. 19 781.

    Article  Google Scholar 

  51. Doebele, R.C., Schulze-Hoepfner, F.T., Hong, J., et al., A novel interplay between Epac/Rap1 and mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) regulates thrombospondin to control angiogenesis, Blood, 2009, vol. 114, no. 20, p. 4592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amano, H., Ando, K., Minamida, S., et al., Adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in vivo,Jpn. J. Pharmacol., 2001, vol. 87, no. 3, p. 181.

    Article  CAS  PubMed  Google Scholar 

  53. Chrzanowska-Wodnicka, M., Kraus, A.E., Gale, D., et al., Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice, Blood, 2008, vol. 111, no. 5, p. 2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lakshmikanthan, S., Sobczak, M., Chun, C., et al., Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin αvβ3, Blood, 2011, vol. 118, no. 7, p. 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fang, Y. and Olah, M.E., Cyclic AMP-dependent, protein kinase A-independent activationextracellular signal-regulated kinase 1/following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1), J. Pharmacol. Exp. Ther., 2007, vol. 322, no. 3, p. 1189.

    Article  CAS  PubMed  Google Scholar 

  56. Namkoong, S., Kim, C.K., Cho, Y.L., et al., Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling, Cell Signaling, 2009, vol. 21, no. 6, p. 906.

    Article  CAS  Google Scholar 

  57. Wang, S., Zhang, Z., Qian, W., et al., Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer, OncoTargets Ther., 2018, vol. 11, p. 3765.

    Article  Google Scholar 

  58. Bond, M., Wu, Y.J., Sala-Newby, G.B., and Newby, A.C., Rho GTPase, Rac1, regulates Skp2 levels, vascular smooth muscle cell proliferation, and intima formation in vitro and in vivo,Cardiovasc. Res., 2008, vol. 80, no. 2, p. 290.

    Article  CAS  PubMed  Google Scholar 

  59. Hewer, R.C., Sala-Newby, G.B., Wu, Y.J., et al., PKA and Epac synergistically inhibit smooth muscle cell proliferation, J. Mol. Cell Cardiol., 2011, vol. 50, no. 1, p. 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimura, T.E., Duggirala, A., Hindmarch, C.C., et al., Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells, J. Mol. Cell Cardiol., 2014, vol. 72, p. 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawano, Y., Yoshimura, T., and Kaibuchi, K., Smooth muscle contraction by small GTPase Rho, Nagoya J. Med. Sci., 2002, vol. 65, nos. 1–2, p. 1.

    CAS  PubMed  Google Scholar 

  62. Lubomirov, L.T., Reimann, K., Metzler, D., et al., Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase, Circ. Res., 2006, vol. 98, no. 9, p. 1159.

    Article  CAS  PubMed  Google Scholar 

  63. Murthy, K.S., Zhou, H., Grider, J.R., and Makhlouf, G.M., Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA, Am. J. Physiol. Gastrointest. Liver Physiol., 2003, vol. 284, no. 6, p. G1006.

    Article  CAS  PubMed  Google Scholar 

  64. Zieba, B.J., Artamonov, M.V., Jin, L., et al., cAMP-responsive Rap1 exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity, J. Biol. Chem., 2011, vol. 286, no. 19, p. 16681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cuíñas, A., García-Morales, V., Viña, D., et al., Activation PKA and Epac cyclic AMP depletes intracellular stores and reduces availability for vasoconstriction, Life Sci., 2016, vol. 155, p. 102.

    Article  PubMed  CAS  Google Scholar 

  66. Shi, Y., Chen, X., Wu, Z., et al., cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel, J. Biol. Chem., 2008, vol. 283, no. 12, p. 7523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Purves, G.I., Kamishima, T., Davies, L.M., et al., Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels, J. Physiol., 2009, vol. 587, no. 14, p. 3639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roberts, O.L., Kamishima, T., Barrett-Jolley, R., et al., Exchange protein activated cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery, J. Physiol., 2013, vol. 591, no. 20, p. 5107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Humphries, E.S., Kamishima, T., Quayle, J.M., and Dart, C., Calcium/calmodulin-dependent kinase 2 mediates Epac-induced spontaneous transient outward currents in rat vascular smooth muscle, J. Physiol., 2017, vol. 595, no. 18, p. 6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stott, J.B., Barrese, V., and Greenwood, I., Kv7 channel activation underpins EPAC-dependent relaxations of rat arteries, Arterioscler., Thromb., Vasc. Biol., 2016, vol. 36, no. 12, p. 2404.

    Article  CAS  Google Scholar 

  71. García-Morales, V., Cuíñas, A., Elíes, J., and Campos-Toimil, M., PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production, Vascul. Pharmacol., 2014, vol. 60, no. 3, p. 95.

    Article  PubMed  CAS  Google Scholar 

  72. Chotani, M.A., Mitra, S., Eid, A.H., et al., Distinct signaling pathways differentially regulate α2C-adrenoceptor expression: role in serum induction in human arteriolar smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 288, no. 1, p. H69.

    Article  CAS  PubMed  Google Scholar 

  73. Eid, A.H., Chotani, M.A., Mitra, S., et al., Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle α2C-adrenoceptors, Am. J. Physiol. Heart Circ. Physiol., 2008, vol. 295, no. 1, p. H266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jeyaraj, S.C., Unger, N.T., Eid, A.H., et al., Cyclic AMP-Rap1A signaling activates RhoA to induce α2C-adrenoceptor translocation to the cell surface of microvascular smooth muscle cells, Am. J. Physiol. Cell Physiol., 2012, vol. 303, no. 5, p. C499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Motawea, H.K., Jeyaraj, S.C., Eid, A.H., et al., Cyclic signaling mediates translocationmicrovascular smooth muscle α2C-adrenoceptors through the actin-binding protein filamin-2, Am. J. Physiol. Cell Physiol., 2013, vol. 305, no. 8, p. C829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, H., Robichaux, W.G., Wang, Z., et al., Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury, Sci. Rep., 2016, vol. 6, p. 36 552.

    Article  CAS  Google Scholar 

  77. Qiao, J., Mei, F.C., Popov, V.L., et al., Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP, J. Biol. Chem., 2002, vol. 277, no. 29, p. 26 581.

    Article  CAS  Google Scholar 

  78. Yokoyama, U., Minamisawa, S., Quan, H., et al., Epac1 is upregulated during neointima formation and promotes vascular smooth muscle cell migration, Am. J. Physiol. Heart Circ. Physiol., 2008, vol. 295, no. 4, p. H1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to Yu.V. Vakhitova, Corresponding Member of the Russian Academy of Sciences, Principal Research Scientist at the Zakusov Institute of Pharmacology (Moscow) for her advisory assistance in work on this literature review and V.V. Barchukov, Research Associate at the Zakusov Institute of Pharmacology, for his assistance in presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kryzhanovsky.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryzhanovsky, S.A., Nikiforova, T.D. & Durnev, A.D. Epac Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part 1: The Role of Epac Proteins in the Physiological and Pathological Processes of the Vasculature. Hum Physiol 46, 200–215 (2020). https://doi.org/10.1134/S0362119720020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720020073

Keywords:

Navigation