Skip to main content

Advertisement

Log in

The eNOS signalosome and its link to endothelial dysfunction

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Endothelial nitric oxide synthase (eNOS) plays an essential role in the regulation of endothelial function and acts as a master regulator of vascular tone and homeostasis through the generation of the gasotransmitter nitric oxide (NO). The complex network of events mediating efficient NO synthesis is regulated by post-translational modifications and protein-protein interactions. Dysregulation of these mechanisms induces endothelial dysfunction, a term often used to refer to reduced NO bioavailability and consequent alterations in endothelial function, that are a hallmark of many cardiovascular diseases. Endothelial dysfunction is linked to eNOS uncoupling, which consists of a switch from the generation of NO to the generation of superoxide anions and hydrogen peroxide. This review provides an overview of the eNOS signalosome, integrating past and recently described protein-protein interactions that have been shown to play a role in the modulation of eNOS activity with implications for cardiovascular pathophysiology. The mechanisms underlying eNOS uncoupling and clinically relevant strategies that were adopted to influence them are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714. doi:10.1161/CIRCULATIONAHA.105.602532

    Article  PubMed  CAS  Google Scholar 

  2. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101:731–736. doi:10.1172/JCI1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shesely G, Nobuyo M, Kim S, Desai M, Krege H, Laubach E, Sherman A, Sessa C, Oliver S (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci 93:13176–13181. doi:10.1073/pnas.93.23.13176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:448–454. doi:10.1161/hc2901.091399

    Article  CAS  PubMed  Google Scholar 

  5. Cook S, Hugli O, Egli M, Menard B, Thalmann S, Sartori C, Perrin C, Nicod P, Thorens B, Vollenweider P, Scherrer U, Burcelin R (2004) Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high-fat diet-induced insulin resistance and arterial hypertension. Diabetes 53:2067–2072. doi:10.2337/diabetes.53.8.2067

    Article  CAS  PubMed  Google Scholar 

  6. Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD (2000) Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49:684–687. doi:10.2337/diabetes.49.5.684

    Article  CAS  PubMed  Google Scholar 

  7. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605. doi:10.1038/21224

    Article  CAS  PubMed  Google Scholar 

  8. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601. doi:10.1038/21218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289. doi:10.1016/S0014-5793(98)01705-0

    Article  CAS  PubMed  Google Scholar 

  10. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr (495) regulates Ca2+/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68–E75. doi:10.1161/hh1101.092677

    Article  CAS  PubMed  Google Scholar 

  11. Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM, Schmidt HH (2000) Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 275:5179–5187. doi:10.1074/jbc.275.7.5179

    Article  CAS  PubMed  Google Scholar 

  12. Gangopahyay A, Oran M, Bauer EM, Wertz JW, Comhair SA, Erzurum SC, Bauer PM (2011) Bone morphogenetic protein receptor II is a novel mediator of endothelial nitric-oxide synthase activation. J Biol Chem 286:33134–33140. doi:10.1074/jbc.M111.274100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michell BJ, Harris MB, Chen ZP, Ju H, Venema VJ, Blackstone MA, Huang W, Venema RC, Kemp BE (2002) Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635. J Biol Chem 277:42344–42351. doi:10.1074/jbc.M205144200

    Article  CAS  PubMed  Google Scholar 

  14. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–17628. doi:10.1074/jbc.C100122200

    Article  CAS  PubMed  Google Scholar 

  15. Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem 276:16587–16591. doi:10.1074/jbc.M100229200

    Article  CAS  PubMed  Google Scholar 

  16. Fulton D, Church JE, Ruan L, Li C, Sood SG, Kemp BE, Jennings IG, Venema RC (2005) Src kinase activates endothelial nitric-oxide synthase by phosphorylating Tyr-83. J Biol Chem 280:35943–35952. doi:10.1074/jbc.M504606200

    Article  CAS  PubMed  Google Scholar 

  17. Fulton D, Ruan L, Sood SG, Li C, Zhang Q, Venema RC (2008) Agonist-stimulated endothelial nitric oxide synthase activation and vascular relaxation. Role of eNOS phosphorylation at Tyr83. Circ Res 102:497–504. doi:10.1161/CIRCRESAHA.107.162933

    Article  CAS  PubMed  Google Scholar 

  18. Venema RC (2002) Post-translational mechanisms of endothelial nitric oxide synthase regulation by bradykinin. Int Immunopharmacol 2:1755–1762. doi:10.1016/S1567-5769(02)00185-6

    Article  CAS  PubMed  Google Scholar 

  19. Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I (2008) Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102:1520–1528. doi:10.1161/CIRCRESAHA.108.172072

    Article  CAS  PubMed  Google Scholar 

  20. Loot AE, Schreiber JG, Fisslthaler B, Fleming I (2009) Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206:2889–2896. doi:10.1084/jem.20090449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dudzinski DM, Michel T (2007) Life history of eNOS: partners and pathways. Cardiovasc Res 75:247–260. doi:10.1016/j.cardiores.2007.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806. doi:10.1007/s00424-009-0767-7

    Article  CAS  PubMed  Google Scholar 

  23. Busse R, Mulsch A (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265:133–136. doi:10.1016/0014-5793(90)80902-U

    Article  CAS  PubMed  Google Scholar 

  24. Church JE, Fulton D (2006) Differences in eNOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environment. J Biol Chem 281:1477–1488. doi:10.1074/jbc.M505968200

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Cardena G, Fan R, Stern DF, Liu J, Sessa WC (1996) Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 271:27237–27240. doi:10.1074/jbc.271.44.27237

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272:25437–25440. doi:10.1074/jbc.272.41.25437

    Article  CAS  PubMed  Google Scholar 

  27. Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272:18522–18525. doi:10.1074/jbc.272.30.18522

    Article  CAS  PubMed  Google Scholar 

  28. Fulton D, Gratton JP, Sessa WC (2001) Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 299:818–824

    CAS  PubMed  Google Scholar 

  29. Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275:22268–22272. doi:10.1074/jbc.M001644200

    Article  CAS  PubMed  Google Scholar 

  30. Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+ -calmodulin and caveolin. J Biol Chem 272:15583–15586. doi:10.1074/jbc.272.25.15583

    Article  CAS  PubMed  Google Scholar 

  31. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367. doi:10.1038/82176

    Article  CAS  PubMed  Google Scholar 

  32. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452. doi:10.1126/science.1062688

    Article  CAS  PubMed  Google Scholar 

  33. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di VD, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138. doi:10.1074/jbc.M105408200

    Article  CAS  PubMed  Google Scholar 

  34. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC (2007) Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 204:2373–2382. doi:10.1084/jem.20062340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291. doi:10.1172/JCI27100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bernatchez PN, Bauer PM, Yu J, Prendergast JS, He P, Sessa WC (2005) Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc Natl Acad Sci U S A 102:761–766. doi:10.1073/pnas.0407224102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC (2011) A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest 121:3747–3755. doi:10.1172/JCI44778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma A, Sellers S, Stefanovic N, Leung C, Tan SM, Huet O, Granville DJ, Cooper ME, de Haan JB, Bernatchez P (2015) Direct endothelial nitric oxide synthase activation provides atheroprotection in diabetes-accelerated atherosclerosis. Diabetes 64:3937–3950. doi:10.2337/db15-0472

    Article  CAS  PubMed  Google Scholar 

  39. Billecke SS, Bender AT, Kanelakis KC, Murphy PJ, Lowe ER, Kamada Y, Pratt WB, Osawa Y (2002) Hsp90 is required for heme binding and activation of apo-neuronal nitric-oxide synthase: geldanamycin-mediated oxidant generation is unrelated to any action of hsp90. J Biol Chem 277:20504–20509. doi:10.1074/jbc.M201940200

    Article  CAS  PubMed  Google Scholar 

  40. Siragusa M, Frohlich F, Park EJ, Schleicher M, Walther TC and Sessa WC (2015) Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation. Sci Signal 8:ra81. doi: 10.1126/scisignal.aaa2819

  41. Fontana J, Fulton D, Chen Y, Fairchild TA, McCabe TJ, Fujita N, Tsuruo T, Sessa WC (2002) Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 90:866–873. doi:10.1161/01.RES.0000016837.26733.BE

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824. doi:10.1038/33934

    Article  CAS  PubMed  Google Scholar 

  43. Russell KS, Haynes MP, Caulin-Glaser T, Rosneck J, Sessa WC, Bender JR (2000) Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release. J Biol Chem 275:5026–5030. doi:10.1074/jbc.275.7.5026

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi S, Mendelsohn ME (2003) Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex. J Biol Chem 278:30821–30827. doi:10.1074/jbc.M304471200

    Article  CAS  PubMed  Google Scholar 

  45. Harris MB, Bartoli M, Sood SG, Matts RL, Venema RC (2006) Direct interaction of the cell division cycle 37 homolog inhibits endothelial nitric oxide synthase activity. Circ Res 98:335–341. doi:10.1161/01.RES.0000203564.54250.0b

  46. Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK (2008) Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8:491–495. doi:10.1038/nrc2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang J, Cyr D, Babbitt RW, Sessa WC, Patterson C (2003) Chaperone-dependent regulation of endothelial nitric-oxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J Biol Chem 278:49332–49341. doi:10.1074/jbc.M304738200

    Article  CAS  PubMed  Google Scholar 

  48. Chiswell BP, Zhang R, Murphy JW, Boggon TJ, Calderwood DA (2008) The structural basis of integrin-linked kinase-PINCH interactions. Proc Natl Acad Sci U S A 105:20677–20682. doi:10.1073/pnas.0811415106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lal H, Verma SK, Foster DM, Golden HB, Reneau JC, Watson LE, Singh H, Dostal DE (2009) Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci (Landmark Ed) 14:2307–2334. doi:10.2741/3381

    Article  CAS  Google Scholar 

  50. Herranz B, Marquez S, Guijarro B, Aracil E, Aicart-Ramos C, Rodriguez-Crespo I, Serrano I, Rodríguez-Puyol M, Zaragoza C, Saura M (2012) Integrin-linked kinase regulates vasomotor function by preventing endothelial nitric oxide synthase uncoupling: role in atherosclerosis. Circ Res 110:439–449. doi:10.1161/CIRCRESAHA.111.253948

    Article  CAS  PubMed  Google Scholar 

  51. Legate KR, Montanez E, Kudlacek O, Fassler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7:20–31. doi:10.1038/nrm1789

    Article  CAS  PubMed  Google Scholar 

  52. Werner C, Bohm M, Friedrich EB (2008) Role of integrin-linked kinase for functional capacity of endothelial progenitor cells in patients with stable coronary artery disease. Biochem Biophys Res Commun 377:331–336. doi:10.1016/j.bbrc.2008.09.081

    Article  CAS  PubMed  Google Scholar 

  53. Friedrich EB, Liu E, Sinha S, Cook S, Milstone DS, MacRae CA, Mariotti M, Kuhlencordt PJ, Force T, Rosenzweig A, St-Arnaud R, Dedhar S, Gerszten RE (2004) Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol Cell Biol 24:8134–8144. doi:10.1128/MCB.24.18.8134-8144.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Serrano I, De FS, Griera M, Medrano D, Rodriguez-Puyol M, Dedhar S, Ruiz-Torres MP, Rodriguez-Puyol D (2013) Ilk conditional deletion in adult animals increases cyclic GMP-dependent vasorelaxation. Cardiovasc Res 99:535–544. doi:10.1093/cvr/cvt131

    Article  CAS  PubMed  Google Scholar 

  55. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13:1467–1475. doi:10.1038/nm1671

    Article  CAS  PubMed  Google Scholar 

  56. Siragusa M, Katare R, Meloni M, Damilano F, Hirsch E, Emanueli C, Madeddu P (2010) Involvement of phosphoinositide 3-kinase gamma in angiogenesis and healing of experimental myocardial infarction in mice. Circ Res 106:757–768. doi:10.1161/CIRCRESAHA.109.207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A, Cesselli D, Beltrami AP, Giacca M, Emanueli C, Madeddu P (2011) Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 108:1238–1251. doi:10.1161/CIRCRESAHA.110.239111

    Article  CAS  PubMed  Google Scholar 

  58. Chen M, Yi B, Zhu N, Wei X, Zhang GX, Huang S, Sun J (2016) Pim1 kinase promotes angiogenesis through phosphorylation of endothelial nitric oxide synthase at Ser-633. Cardiovasc Res 109:141-150. doi:10.1093/cvr/cvv250

  59. Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M and Hirano T (2001) Regulation of Pim-1 by Hsp90. Biochem Biophys Res Commun 281:663-669. doi: 10.1006/bbrc.2001.4405

  60. Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS (2005) Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 3:170–181. doi:10.1158/1541-7786.MCR-04-0192

    Article  PubMed  Google Scholar 

  61. Lorenzon-Ojea AR, Caldeira W, Ribeiro AF, Fisher SJ, Guzzo CR, Bevilacqua E (2014) Stromal cell derived factor-2 (Sdf2): a novel protein expressed in mouse. Int J Biochem Cell Biol 53:262–270. doi:10.1016/j.biocel.2014.05.024

    Article  CAS  PubMed  Google Scholar 

  62. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001. doi:10.1016/j.cell.2012.06.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dedio J, König P, Wohlfart P, Schroeder C, Kummer W, Müller-Esterl W (2001) NOSIP, a novel modulator of endothelial nitric oxide synthase activity. FASEB J 15:79-89. doi:10.1096/fj.00-0078com

  64. Schleicher M, Brundin F, Gross S, Muller-Esterl W, Oess S (2005) Cell cycle-regulated inactivation of endothelial NO synthase through NOSIP-dependent targeting to the cytoskeleton. Mol Cell Biol 25:8251–8258. doi:10.1128/MCB.25.18.8251-8258.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zimmermann K, Opitz N, Dedio J, Renne C, Müller-Esterl W, Oess S (2002) NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 99:17167–17172. doi:10.1073/pnas.252345399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fulton D, Fontana J, Sowa G, Gratton JP, Lin M, Li KX, Michell B, Kemp BE, Rodman D, Sessa WC (2002) Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J Biol Chem 277:4277–4284. doi:10.1074/jbc.M106302200

    Article  CAS  PubMed  Google Scholar 

  67. Jagnandan D, Sessa WC, Fulton D (2005) Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. Am J Physiol Cell Physiol 289:C1024–C1033. doi:10.1152/ajpcell.00162.2005

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Q, Church JE, Jagnandan D, Catravas JD, Sessa WC, Fulton D (2006) Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler Thromb Vasc Biol 26:1015–1021. doi:10.1161/01.ATV.0000216044.49494.c4

    Article  CAS  PubMed  Google Scholar 

  69. Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC (2006) Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci U S A 103:19777–19782. doi:10.1073/pnas.0605907103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sangwung P, Greco TM, Wang Y, Ischiropoulos H, Sessa WC, Iwakiri Y (2012) Proteomic identification of S-nitrosylated Golgi proteins: new insights into endothelial cell regulation by eNOS-derived NO. PLoS One 7, e31564. doi:10.1371/journal.pone.0031564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoffmeister M, Prelle C, Kuchler P, Kovacevic I, Moser M, Muller-Esterl W, Oess S (2014) The ubiquitin E3 ligase NOSIP modulates protein phosphatase 2A activity in craniofacial development. PLoS One 9, e116150. doi:10.1371/journal.pone.0116150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kovacevic I, Muller M, Kojonazarov B, Ehrke A, Randriamboavonjy V, Kohlstedt K, Hindemith T, Schermuly RT, Fleming I, Hoffmeister M, Oess S (2015) The F-BAR protein NOSTRIN dictates the localization of the muscarinic M3 receptor and regulates cardiovascular function. Circ Res 117:460–469. doi:10.1161/CIRCRESAHA.115.306187

    Article  CAS  PubMed  Google Scholar 

  73. Kovacevic I, Hu J, Siehoff-Icking A, Opitz N, Griffin A, Perkins AC, Munn AL, Muller-Esterl W, Popp R, Fleming I, Jungblut B, Hoffmeister M, Oess S (2012) The F-BAR protein NOSTRIN participates in FGF signal transduction and vascular development. EMBO J 31:3309–3322. doi:10.1038/emboj.2012.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA, Getzoff ED (2004) Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. J Biol Chem 279:37918–37927. doi:10.1074/jbc.M406204200

    Article  CAS  PubMed  Google Scholar 

  75. Yin G, Yan C, Berk BC (2003) Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol 35:780–783. doi:10.1016/S1357-2725(02)00300-X

    Article  CAS  PubMed  Google Scholar 

  76. Tai LK, Okuda M, Abe J, Yan C, Berk BC (2002) Fluid shear stress activates proline-rich tyrosine kinase via reactive oxygen species-dependent pathway. Arterioscler Thromb Vasc Biol 22:1790–1796. doi:10.1161/01.ATV.0000034475.40227.40

    Article  CAS  PubMed  Google Scholar 

  77. Fleming I, Schulz C, Fichtlscherer B, Kemp BE, Fisslthaler B, Busse R (2003) AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. Thromb Haemost 90:863–871. doi:10.1160/TH03-04-0228

    CAS  PubMed  Google Scholar 

  78. Randriamboavonjy V, Schrader J, Busse R, Fleming I (2004) Insulin induces the release of vasodilator compounds from platelets by a nitric oxide-G kinase-VAMP-3-dependent pathway. J Exp Med 199:347–356. doi:10.1084/jem.20030694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee YI, Giovinazzo D, Kang HC, Lee Y, Jeong JS, Doulias PT, Xie Z, Hu J, Ghasemi M, Ischiropoulos H, Qian J, Zhu H, Blackshaw S, Dawson VL, Dawson TM (2014) Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteomics 13:63–72. doi:10.1074/mcp.M113.032235

    Article  CAS  PubMed  Google Scholar 

  80. Yan XL, Liu DH, Zhang GL, Hu SQ, Chen YG, Xu T (2015) S-Nitrosylation of proline-rich tyrosine kinase 2 involves its activation induced by oxygen-glucose deprivation. Neurosci Lett 597:90–96. doi:10.1016/j.neulet.2015.04.043

    Article  CAS  PubMed  Google Scholar 

  81. Liu S, Premont RT, Rockey DC (2012) G-protein-coupled receptor kinase interactor-1 (GIT1) is a new endothelial nitric-oxide synthase (eNOS) interactor with functional effects on vascular homeostasis. J Biol Chem 287:12309–12320. doi:10.1074/jbc.M111.320465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu S, Premont RT, Rockey DC (2014) Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 289:18163–18174. doi:10.1074/jbc.M113.521203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ruan L, Torres CM, Qian J, Chen F, Mintz JD, Stepp DW, Fulton D, Venema RC (2011) Pin1 prolyl isomerase regulates endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 31:392-398. doi:10.1161/ATVBAHA.110.213181

  84. Costantino S, Paneni F, Luscher TF, Cosentino F (2016) Pin1 inhibitor Juglone prevents diabetic vascular dysfunction. Int J Cardiol 203:702–707. doi:10.1016/j.ijcard.2015.10.221

    Article  PubMed  Google Scholar 

  85. Paneni F, Costantino S, Castello L, Battista R, Capretti G, Chiandotto S, D’A D, Scavone G, Villano A, Rustighi A, Crea F, Pitocco D, Lanza G, Volpe M, Sal GD, Luscher TF, Cosentino F (2014) Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes. Eur Heart J 36:817–828. doi:10.1093/eurheartj/ehu179

    Article  PubMed  Google Scholar 

  86. Chiasson VL, Munshi N, Chatterjee P, Young KJ, Mitchell BM (2011) Pin1 deficiency causes endothelial dysfunction and hypertension. Hypertension 58:431–438. doi:10.1161/HYPERTENSIONAHA.111.172338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kennard S, Ruan L, Buffett RJ, Fulton D and Venema RC (2016) TNFα reduces eNOS activity in endothelial cells through Serine 116 phosphorylation and Pin1 binding: confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vasc Pharmacol. doi:10.1016/j.vph.2016.04.003

  88. Ma J, Arnold HK, Lilly MB, Sears RC, Kraft AS (2007) Negative regulation of Pim-1 protein kinase levels by the B56β subunit of PP2A. Oncogene 26:5145–5153. doi:10.1038/sj.onc.1210323

    Article  CAS  PubMed  Google Scholar 

  89. Pfenniger A, Derouette JP, Verma V, Lin X, Foglia B, Coombs W, Roth I, Satta N, Dunoyer-Geindre S, Sorgen P, Taffet S, Kwak BR, Delmar M (2010) Gap junction protein Cx37 interacts with endothelial nitric oxide synthase in endothelial cells. Arterioscler Thromb Vasc Biol 30:827–834. doi:10.1161/ATVBAHA.109.200816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U (2000) Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 86:649–655. doi:10.1161/01.RES.86.6.649

    Article  PubMed  Google Scholar 

  91. Wagner C, de WC, Kurtz L, Grunberger C, Kurtz A and Schweda F (2007) Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100:556-563. doi: 10.1161/01.RES.0000258856.19922.45

  92. Alonso F, Boittin FX, Beny JL, Haefliger JA (2010) Loss of connexin40 is associated with decreased endothelium-dependent relaxations and eNOS levels in the mouse aorta. Am J Physiol Heart Circ Physiol 299:H1365–H1373. doi:10.1152/ajpheart.00029.2010

    Article  CAS  PubMed  Google Scholar 

  93. Le GL, Alonso F, Mazzolai L, Meda P, Haefliger JA (2015) Interplay between connexin40 and nitric oxide signaling during hypertension. Hypertension 65:910–915. doi:10.1161/HYPERTENSIONAHA.114.04775

    Article  CAS  Google Scholar 

  94. Meens MJ, Alonso F, Le GL, Kwak BR, Haefliger JA (2015) Endothelial Connexin37 and Connexin40 participate in basal but not agonist-induced NO release. Cell Commun Signal 13:34. doi:10.1186/s12964-015-0110-1

    Article  PubMed  PubMed Central  Google Scholar 

  95. Adam CS, Alexander WL, Marie B, Scott RJ, Scott TD, Monica YL, Pamela SB, Angela KB, Linda C, Benjamin G, Isakson BE (2012) Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 491:473–477. doi:10.1038/nature11626

    Article  CAS  Google Scholar 

  96. Straub AC, Butcher JT, Billaud M, Mutchler SM, Artamonov MV, Nguyen AT, Johnson T, Best AK, Miller MP, Palmer LA, Columbus L, Somlyo AV, Le TH, Isakson BE (2014) Hemoglobin α/eNOS coupling at myoendothelial junctions is required for nitric oxide scavenging during vasoconstriction. Arterioscler Thromb Vasc Biol 34:2594–2600. doi:10.1161/ATVBAHA.114.303974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118. doi:10.1038/nature09599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feng W, William S.Szczepaniak, Sruti S, Huanbo L, Yinna W, Ling W, Ying W, Eric E.Kelley, Alex FC, Mark TG and Bryan JM (2014) Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 307:L987–L997. doi: 10.1152/ajplung.00063.2014

  99. Zou MH, Shi C, Cohen RA (2002) Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109:817–826. doi:10.1172/JCI14442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Michell DL, Andrews KL, Chin-Dusting JP (2011) Endothelial dysfunction in hypertension: the role of arginase. Front Biosci (Schol Ed) 3:946–960. doi:10.2741/199

    Article  Google Scholar 

  101. Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikka G, Lim HK, Sohi J, Santhanam L, Soucy K, Tuday E, Baraban E, Ilies M, Gerstenblith G, Nyhan D, Shoukas A, Christianson DW, Alp NJ, Champion HC, Huso D, Berkowitz DE (2008) Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res 102:923–932. doi:10.1161/CIRCRESAHA.107.169573

    Article  CAS  PubMed  Google Scholar 

  102. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M, Caldwell RB, Caldwell RW (2008) Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res 102:95–102. doi:10.1161/CIRCRESAHA.107.155028

    Article  CAS  PubMed  Google Scholar 

  103. Santhanam L, Christianson DW, Nyhan D, Berkowitz DE (2008) Arginase and vascular aging. J Appl Physiol 105:1632–1642. doi:10.1152/japplphysiol.90627.2008

  104. Pernow J, Jung C (2013) Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res 98:334–343. doi:10.1093/cvr/cvt036

    Article  CAS  PubMed  Google Scholar 

  105. Shemyakin A, Kovamees O, Rafnsson A, Bohm F, Svenarud P, Settergren M, Jung C, Pernow J (2012) Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation 126:2943–2950. doi:10.1161/CIRCULATIONAHA.112.140335

    Article  CAS  PubMed  Google Scholar 

  106. Beleznai T, Feher A, Spielvogel D, Lansman SL, Bagi Z (2011) Arginase 1 contributes to diminished coronary arteriolar dilation in patients with diabetes. Am J Physiol Heart Circ Physiol 300:H777–H783. doi:10.1152/ajpheart.00831.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Quitter F, Figulla HR, Ferrari M, Pernow J, Jung C (2013) Increased arginase levels in heart failure represent a therapeutic target to rescue microvascular perfusion. Clin Hemorheol Microcirc 54:75–85. doi:10.3233/CH-2012-1617

    CAS  PubMed  Google Scholar 

  108. Holowatz LA, Kenney WL (2007) Up-regulation of arginase activity contributes to attenuated reflex cutaneous vasodilatation in hypertensive humans. J Physiol 581:863–872. doi:10.1113/jphysiol.2007.128959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14:323–327. doi:10.1016/j.tcm.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  110. Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420. doi:10.1161/01.ATV.0000110785.96039.f6

    Article  CAS  PubMed  Google Scholar 

  111. Zheng JS, Yang XQ, Lookingland KJ, Fink GD, Hesslinger C, Kapatos G, Kovesdi I, Chen AF (2003) Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 108:1238–1245. doi:10.1161/01.CIR.0000089082.40285.C3

    Article  CAS  PubMed  Google Scholar 

  112. Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24:445–450. doi:10.1161/01.ATV.0000115637.48689.77

    Article  CAS  PubMed  Google Scholar 

  113. Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112:725–735. doi:10.1172/JCI17786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Antoniades C, Shirodaria C, Crabtree M, Rinze R, Alp N, Cunnington C, Diesch J, Tousoulis D, Stefanadis C, Leeson P, Ratnatunga C, Pillai R, Channon KM (2007) Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation 116:2851–2859. doi:10.1161/CIRCULATIONAHA.107.704155

    Article  CAS  PubMed  Google Scholar 

  115. Heitzer T, Brockhoff C, Mayer B, Warnholtz A, Mollnau H, Henne S, Meinertz T, Munzel T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 86:E36–E41. doi:10.1161/01.RES.86.2.e36

    Article  CAS  PubMed  Google Scholar 

  116. Fukuda Y, Teragawa H, Matsuda K, Yamagata T, Matsuura H, Chayama K (2002) Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia. Heart 87:264–269. doi:10.1136/heart.87.3.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Maier W, Cosentino F, Lutolf RB, Fleisch M, Seiler C, Hess OM, Meier B, Luscher TF (2000) Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J Cardiovasc Pharmacol 35:173–178. doi:10.1155/2014/850312

    Article  CAS  PubMed  Google Scholar 

  118. Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 43:1435–1438. doi:10.1007/s001250051551

    Article  CAS  PubMed  Google Scholar 

  119. Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, Chayama K (2002) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15:326–332. doi:10.1016/S0895-7061(01)02317-2

    Article  CAS  PubMed  Google Scholar 

  120. Cunnington C, Van AT, Shirodaria C, Kylintireas I, Lindsay AC, Lee JM, Antoniades C, Margaritis M, Lee R, Cerrato R, Crabtree MJ, Francis JM, Sayeed R, Ratnatunga C, Pillai R, Choudhury RP, Neubauer S, Channon KM (2012) Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation 125:1356–1366. doi:10.1161/CIRCULATIONAHA.111.038919

    Article  CAS  PubMed  Google Scholar 

  121. Benson MA, Batchelor H, Chuaiphichai S, Bailey J, Zhu H, Stuehr DJ, Bhattacharya S, Channon KM, Crabtree MJ (2013) A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization. J Biol Chem 288:29836–29845. doi:10.1074/jbc.M113.493023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chalupsky K, Cai H (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 102:9056–9061. doi:10.1073/pnas.0409594102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Galougahi KK, Liu CC, Gentile C, Kok C, Nunez A, Garcia A, Fry NA, Davies MJ, Hawkins CL, Rasmussen HH, Figtree GA (2014) Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc 3, e000731. doi:10.1161/JAHA.113.000731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Claudia Koch for her assistance in the preparation of the figures. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 834/A9 and Exzellenzcluster 147 “Cardio-Pulmonary Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Fleming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siragusa, M., Fleming, I. The eNOS signalosome and its link to endothelial dysfunction. Pflugers Arch - Eur J Physiol 468, 1125–1137 (2016). https://doi.org/10.1007/s00424-016-1839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1839-0

Keywords

Navigation