Skip to main content
Log in

Structural and Functional Basis of Chronic Disorders of Consciousnes

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The problem of chronic disorders of consciousness (DOC) remains challenging due to increasing number of these patients and limited therapeutic options. Novel diagnostic approaches provided us with valuable insights into the mechanisms of DOC, such as structural and/or functional disconnection of elements of brain networks that are essential for information processing. Depending on the modality of the study, it may be represented as low-frequency EEG patterns, global or regional decrease of cortical metabolism on PET scanning, abnormal connectivity structural or functional MRI, or low-differentiated/disintegrated TMS-EEG responses. Deeper knowledge of nature of abnormalities underlying chronic DOC may improve accuracy of diagnosis and efficacy of treatment interventions, as well as bring us somewhat closer to the understanding the phenomenon of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rosenblath, W., Uber einen bemerkenswerten Fall von Himerschutterrun (aus dem Landkrankenshaus Kassel), Arch. Klin. Med., 1899, vol. 64, pp. 406–424.

    Google Scholar 

  2. Kretschmer, E., Das apallische syndrom, Z. Gesamte Neurol. Psychiatr., 1940, vol. 169, pp. 576–579. https://doi.org/10.1007/BF02871384

    Article  Google Scholar 

  3. Jennett, B. and Plum, F., Persistent vegetative state after brain damage. A syndrome in search of a name, Lancet, 1972, vol. 1, no. 7753, pp. 734–737.

    Article  CAS  Google Scholar 

  4. Giacino, J.T., Ashwal, S., Childs, N., et al., The minimally conscious state: definition and diagnostic criteria, Neurology, 2002, vol. 58, pp. 349–353.

    Article  Google Scholar 

  5. Laureys, S., Celesia, G.G., Cohadon, F., et al., Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome, BMC Med., 2010, vol. 8, p. 68. https://doi.org/10.1186/1741-7015-8-68

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giacino, G.T., Katz D.I., Schiff N.D., et al., Practice guideline update recommendations summary: disorders of consciousness, Neurology, 2018, vol. 91, no. 10, pp. 450–460.https://doi.org/10.1212/WNL.0000000000005926

    Article  PubMed  PubMed Central  Google Scholar 

  7. Giacino G.T., Katz, D.I., Schiff, N.D., et al., Comprehensive systematic review update summary: disorders of consciousness, Neurology, 2018, vol. 91, no. 10, pp. 461–470.https://doi.org/10.1212/WNL.0000000000005928

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bruno, M.A., Vanhaudenhuyse, A., Thibaut, A., et al., From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness, J. Neurol., 2011, vol. 258, pp. 1373–1384.https://doi.org/10.1007/s00415-011-6114-x

    Article  PubMed  Google Scholar 

  9. Bruno, M.A., Schnakers, C., Boly, M., et al., Subcategorizing the minimally conscious state based on cerebral metabolism PET studies, Proc. 19th Meeting of the European Neurological Society, Basel: Eur. Neurol. Soc., 2009.

  10. Edelman, G.M. and Tononi, G., A Universe of Consciousness: How Matter Becomes Imagination, New York: Basic Books, 2003.

    Google Scholar 

  11. Edlow, B.L., Haynes, R.L., Takahashi, E., et al., Disconnection of the ascending arousal system in traumatic coma, J. Neuropathol. Exp. Neurol., 2013, vol. 72, pp. 505–523.https://doi.org/10.1097/NEN.0b013e3182945bf6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sherer, M., Nakase-Thompson, R., Yablon, S.A., et al., Multidimensional assessment of acute confusion after traumatic brain injury, Arch. Phys. Med. Rehabil., 2005, vol. 86, no. 5, pp. 896–904.https://doi.org/10.1016/j.apmr.2004.09.029

    Article  PubMed  Google Scholar 

  13. Eapen, B.C., Georgekutty, J., Subbarao, B., et al., Disorders of consciousness, Phys. Med. Rehabil. Clin. N. Am., 2017, vol. 28, no. 2, pp. 245–258.https://doi.org/10.1016/j.pmr.2016.12.003

    Article  PubMed  Google Scholar 

  14. Laureys, S., The neural correlate of (un)awareness: lessons from the vegetative state, Trends Cognit. Sci., 2005, vol. 9, pp. 556–559. https://doi.org/10.1016/j.tics.2005.10.010

    Article  Google Scholar 

  15. Coma and Disorders of Consciousness, Schnakers, C. and Laureys, S., Eds., New York: Springer-Verlag, 2018, 2nd ed.

    Google Scholar 

  16. Adams, J.H., Graham, D.I., and Jennett, B., The neuropathology of the vegetative state after an acute brain insult, Brain, 2000, vol. 123, pp. 1327–1338.

    Article  Google Scholar 

  17. Giacino, J. and Malone, R., The vegetative and minimally conscious states, in Handbook of Clinical Neurology, Vol. 90: Disorders of Consciousness, Young, G.B. and Wijdicks, E.F., Eds., Amsterdam: Elsevier, 2008, pp. 773–786.

  18. Dougherty, J.H., Rawlinson, D.G., Levy, D.E., et al., Hypoxicischemic brain injury and the vegetative state: clinical and neuropathologic correlation, Neurology, 1981, vol. 31, pp. 991–997.

    Article  Google Scholar 

  19. Kinney, H.C., Korein, J., Panigrahy, A., et al., Neuropathological findings in the brain of Karen Ann. Quinlan: the role of the thalamus in the persistent vegetative state, N. Engl. J. Med., 1994, vol. 330, pp. 1469–1475. . https://doi.org/10.1056/NEJM199405263302101

    Article  CAS  PubMed  Google Scholar 

  20. Rosenblum, W.I., Immediate, irreversible, posttraumatic coma: a review indicating that bilateral brainstem injury rather than widespread hemispheric damage is essential for its production, J. Neuropathol. Exp. Neuro-l., 2015, vol. 274, pp. 198–202.https://doi.org/10.1097/NEN.0000000000000170

    Article  Google Scholar 

  21. Lutkenhoff, E.S., Chiang, J., Tshibanda, L., et al., Thalamic and extrathalamic mechanisms of consciousness after severe brain injury, Ann. Neurol., 2015, vol. 78, no. 1, pp. 68–76.https://doi.org/10.1002/ana.24423

    Article  PubMed  Google Scholar 

  22. Schnakers, C., Vanhaudenhuyse, A., Giacino, J., et al., Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment, BMC Neurol., 2009, vol. 9, no. 1, p. 35.https://doi.org/10.1186/1471-2377-9-35

    Article  PubMed  PubMed Central  Google Scholar 

  23. Legostayeva, L.A., Mochalova, E.G., Suponeva, N.A., et al., The complications of the clinical diagnosis of chronic impairment of consciousness and recommendations for the clinical and instrumental assessment of patients after they leave the coma, Anesteziol. Reanimatol., 2017, no. 6 (62), pp. 449–456.

  24. Fernandez-Espejo, D., Junque, C., Bernabeu, M., et al., Reductions of thalamic volume and regional shape changes in the vegetative and the minimally conscious states, J. Neurotrauma, 2010, vol. 27, pp. 1187–1193.https://doi.org/10.1089/neu.2010.1297

    Article  PubMed  Google Scholar 

  25. Annen, J., Frasso, G., Crone, J.S., et al., Regional brain volumetry and brain function in severely brain-injured patients, Ann. Neurol., 2018, vol. 83, no. 4, pp. 842–853. https://doi.org/10.1002/ana.25214

    Article  CAS  PubMed  Google Scholar 

  26. Kampfl, A., Schmutzhard, E., Franz, G., et al., Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging, Lancet, 1998, vol. 351, pp. 1763–1767.https://doi.org/10.1016/S0140-6736(97)10301-4

    Article  CAS  PubMed  Google Scholar 

  27. Morozova, S., Kremneva, E., Sergeev, D., et al., Conventional structural magnetic resonance imaging in differentiating chronic disorders of consciousness, Brain Sci., 2018, vol. 8, no. 8, p. E144.https://doi.org/10.3390/brainsci8080144

    Article  PubMed  Google Scholar 

  28. Fernandez-Espejo, D., Bekinschtein, T., Monti, M.M., et al., Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state, NeuroImage, 2011, vol. 54, pp. 103–112.https://doi.org/10.1016/j.neuroimage.2010.08.035

    Article  PubMed  Google Scholar 

  29. Fernandez-Espejo, D., Soddu, A., Cruse, D., et al., A role for the default mode network in the bases of disorders of consciousness, Ann. Neurol., 2012, vol. 72, pp. 335–343. https://doi.org/10.1002/ana.23635

    Article  PubMed  Google Scholar 

  30. Annen, J., Heine, L., Ziegler, E., et al., Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET, Hum. Brain Mapp., 2016, vol. 37, no. 11, pp. 3707–3720.https://doi.org/10.1002/hbm.23269

    Article  CAS  PubMed  Google Scholar 

  31. Jensen, J.H. and Helpern, J.A., MRI quantification of non-Gaussian water diffusion by kurtosis analysis, NMR Biomed., 2010, vol. 3, no. 7, pp. 698–710.https://doi.org/10.1002/nbm.1518

    Article  Google Scholar 

  32. De Volder, A.G., Goffinet, A.M., Bol, A., et al., Brain glucose metabolism in postanoxic syndrome. Positron emission tomographic study, Arch. Neurol., 1990, vol. 47, pp. 197–204.

    Article  CAS  Google Scholar 

  33. Stender, J., Kupers, R., Rodell, A., et al., Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients, J. Cereb. Blood Flow Metab., 2015, vol. 35, no. 1, pp. 58–65.https://doi.org/10.1038/jcbfm.2014

    Article  CAS  PubMed  Google Scholar 

  34. Laureys, S., Lemaire, C., Maquet, P., et al., Cerebral metabolism during vegetative state and after recovery to consciousness, J. Neurol. Neurosurg. Psychiatry, 1999, vol. 67, p. 121.

    Article  CAS  Google Scholar 

  35. Laureys, S., Pellas, F., van Eeckhout, P., et al., The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog. Brain Res., 2005, vol. 150, pp. 495–511.https://doi.org/10.1016/S0079-6123(05)50034-7

    Article  PubMed  Google Scholar 

  36. Laureys, S., Goldman, S., Phillips, C., et al., Impaired effective cortical connectivity in vegetative state, NeuroImage, 1999, vol. 9, pp. 377–382.https://doi.org/10.1006/nimg.1998.0414

    Article  CAS  PubMed  Google Scholar 

  37. Lull, N., Noé, E., Lull, J., et al., Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition, Brain, Inj., 2010, vol. 24, pp. 1098–1107.https://doi.org/10.3109/02699052.2010.494592

    Article  Google Scholar 

  38. Vogt, B.A. and Laureys, S., Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness, Prog. Brain Res., 2005, vol. 150, pp. 205–217.https://doi.org/10.1016/S0079-6123(05)50015-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laureys, S., Antoine, S., Boly, M., et al., Brain function in the vegetative state, Acta Neurol. Belgr., 2002, vol. 102, no. 4, pp. 177–185.

    Google Scholar 

  40. Laureys, S., The neural correlate of (un)awareness: lessons from the vegetative state, Trends Cognit. Sci., 2005, vol. 9, no. 12, pp. 556–559.https://doi.org/10.1016/j.tics.2005.10.010

    Article  Google Scholar 

  41. The Neurology of Consciousness, Laureys, S., Gosseries, J., and Tononi, G., Eds., London: Academic, 2015, 2nd ed.

    Google Scholar 

  42. Schiff, N.D., Recovery of consciousness after brain injury: a mesocircuit hypothesis, Trends Neurosci., 2010, vol. 33, no. 1, pp. 1–9.https://doi.org/10.1016/j.tins.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  43. Laureys, S., Faymonville, M.E., Luxen, A., et al., Restoration of thalamocortical connectivity after recovery from persistent vegetative state, Lancet, 2000, vol. 355, pp. 1790–1791.

    Article  CAS  Google Scholar 

  44. Piradov, M.A., Tanashyan, M.M., Krotenkova, M.V., et al., Advanced non-visualization technology, Ann. Klin. Eksp. Nevrol., 2015, no. 9 (4), pp. 11–18.

  45. Bruno, M.A., Boly, M., and Vanhaudenhuyse, A., Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients, J. Neurol., 2012, vol. 259, pp. 1087–1098.https://doi.org/10.1007/s00415-011-6303-7

    Article  PubMed  Google Scholar 

  46. Laureys, S. and Schiff, N.D., Coma and consciousness: paradigms (re)framed by neuroimaging, NeuroImage, 2012, vol. 61, pp. 478–491.https://doi.org/10.1016/j.neuroimage.2011.12.041

    Article  PubMed  Google Scholar 

  47. Di, H., Boly, M., Weng, X., et al., Neuroimaging activation studies in the vegetative state: predictors of recovery? Clin. Med., 2008, vol. 8, no. 5, pp. 502–507.

    Article  Google Scholar 

  48. Monti, M.M., Vanhaudenhuyse, A., Coleman, M.R., et al., Willful modulation of brain activity in disorders of consciousness, N. Engl. J. Med., 2010, vol. 362, pp. 579–589. https://doi.org/10.1056/NEJMoa0905370

    Article  CAS  PubMed  Google Scholar 

  49. Owen, A.M., Coleman, M.R., Boly, M., et al., Detecting awareness in the vegetative state, Science, 2006, vol. 313, no. 5792, p. 1402.

    Article  CAS  Google Scholar 

  50. Piradov, M.A., Suponeva, N.A., Seliverstov, Yu.A., et al., Possibilities of modern non-visualization methods in the study of spontaneous activity of the brain at rest, Nevrol. Zh., 2016, no. 21 (1), pp. 4–12.

  51. Guldenmund, P., Vanhaudenhuyse, A., Boly, M., et al., A default mode of brain function in altered states of consciousness, Arch. Ital. Biol., 2012, vol. 150, pp. 107–121. https://doi.org/10.4449/aib.v150i2.1373

    Article  CAS  PubMed  Google Scholar 

  52. Demertzi, A., Soddu, A., and Laureys, S., Consciousness supporting networks, Curr. Opin. Neurobiol., 2013, vol. 23, pp. 239–244. https://doi.org/10.1016/j.conb.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  53. Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L.J., et al., Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients, Brain, 2010, vol. 133, pp. 161–171. https://doi.org/10.1093/brain/awp313

    Article  PubMed  Google Scholar 

  54. Demertzi, A., Antonopoulos, G., Heine, L., et al., Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients, Brain, 2015, vol. 138, no. 9, pp. 2619–2631. https://doi.org/10.1093/brain/awv169

    Article  PubMed  Google Scholar 

  55. Rosazza, C., Andronache, A., Sattin, D., et al., Multimodal study of default-mode network integrity in disorders of consciousness, Ann. Neurol., 2016, vol. 79, no. 5, pp. 841–853. https://doi.org/10.1002/ana.24634

    Article  PubMed  Google Scholar 

  56. Vanhaudenhuyse, A., Demertzi, A., Schabus, M., et al., Two distinct neuronal networks mediate the awareness of environment and of self, J. Cognit. Neurosci., 2011, vol. 23, no. 3, pp. 570–578. https://doi.org/10.1162/jocn.2010.21488

    Article  Google Scholar 

  57. Boly, M., Phillips, C., Tshibanda, L., et al., Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann. N.Y. Acad. Sci., 2008, vol. 1129, pp. 119–129. https://doi.org/10.1196/annals.1417.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thibaut, A., Bruno, M.A., Chatelle, C., et al., Metabolic activity in external and internal awareness networks in severely brain-damaged patients, J. Rehabil. Med., 2012, vol. 44, no. 6, pp. 487–494. https://doi.org/10.2340/16501977-0940

    Article  PubMed  Google Scholar 

  59. Demertzi, A., Gomez, F., Crone, J.S., et al., Multiple fMRI system-level base-line connectivity is disrupted in patients with consciousness alterations, Cortex, 2014, vol. 52, pp. 35–46. https://doi.org/10.1016/j.cortex.2013.11.005

    Article  PubMed  Google Scholar 

  60. Wu, X., Zou, Q., Hu, J., et al., Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury, J. Neurosci., 2015, vol. 35, no. 37, pp. 12932–12946. https://doi.org/10.1523/JNEUROSCI.0415-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sinitsyn, D.O., Legostaeva, L.A., Kremneva, E.I., et al., Degrees of functional connectome abnormality in disorders of consciousness, Hum. Brain Mapp., 2018, vol. 10, pp. 1–12. https://doi.org/10.1002/hbm.24050

    Article  Google Scholar 

  62. Giacino, J.T., Fins, J.J., Laureys, S., and Schiff, N.D., Disorders of consciousness after acquired brain injury: the state of the science, Nat. Rev. Neurol., 2014, vol. 10, no. 2, pp. 99–114. https://doi.org/10.1038/nrneurol.2013.279

    Article  PubMed  Google Scholar 

  63. Gnezditskiy, V.V. and Piradov, M.A., Neyrofiziologiya komy i narusheniya soznaniya (Analiz i interpretatsiya klinicheskikh nablyudeniy) (Neurophysiology of Coma and Impairment of Consciousness: Analysis and Interpretation of Clinical Observations), Ivanovo: PresSto, 2015.

  64. Estraneo, A., Loreto, V., Guarino, I., et al., Standard EEG in diagnostic process of prolonged disorders of consciousness, Clin. Neurophysiol., 2016, vol. 127, pp. 2379–2385. https://doi.org/10.1016/j.clinph.2016.03.021

    Article  PubMed  Google Scholar 

  65. Forgacs, P.B., Conte, M.M., Fridman, E.A., et al., Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following, Ann. Neurol., 2014, vol. 76, no. 6, pp. 869–879. https://doi.org/10.1002/ana.24283

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cologan, V., Drouot, X., Parapatics, S., et al., Sleep in the unresponsive wakefulness syndrome and minimally conscious state, J. Neurotrauma, 2013, vol. 30, pp. 339–346. https://doi.org/10.1089/neu.2012.2654

    Article  PubMed  Google Scholar 

  67. Landsness, E., Bruno, M.A., Noirhomme, Q., et al., Electrophysiological correlates of behavioral changes in vigilance in vegetative state and minimally conscious state, Brain, 2011, vol. 134, pp. 2222–2232. https://doi.org/10.1093/brain/awr152

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kotchoubey, B., Lang, S., Mezger, G., et al., Information processing in severe disorders of consciousness: vegetative state and minimally conscious state, Clin. Neurophysiol., 2005, vol. 116, no. 10, pp. 2441–2453. https://doi.org/10.1016/j.clinph.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  69. Schnakers, C., Perrin, F., Schabus, M., et al., Voluntary brain processing in disorders of consciousness, Neurology, 2008, vol. 71, pp. 1614–1620. https://doi.org/10.1212/01.wnl.0000334754.15330.69

    Article  CAS  PubMed  Google Scholar 

  70. Chennu, S., Finoia, P., Kamau, E., et al., Dissociable endogenous and exogenous attention in disorders of consciousness, Neuroimage Clin., 2013, vol. 3, pp. 450–461. https://doi.org/10.1016/j.nicl.2013.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  71. Faugeras, F., Rohaut, B., Weiss, N., et al., Probing consciousness with event-related potentials in the vegetative state, Neurology, 2011, vol. 77, no. 3, pp. 264–268. https://doi.org/10.1212/WNL.0b013e3182217ee8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ilmoniemi, R.J. and Kičić, D., Methodology for combined TMS and EEG, Brain Topogr., 2010, vol. 22, no. 4, pp. 233–248.

    Article  Google Scholar 

  73. Chervyakov, A.V., Piradov, M.A., Savitskaya, N.G., et al., New step to personalized medicine. Transcranial Magnetic Stimulation Navigation System (NBS EXIMIA N · EXSTIM), Ann. Klin. Eksp. Nevrol., 2012, no. 6 (3), pp. 37–46.

  74. Casali, A.G., Gosseries, O., Rosanova, M., et al., A theoretically based index of consciousness independent of sensory processing and behavior, Sci. Translat. Med., 2013, vol. 5, no. 198, p. 198ra105. https://doi.org/10.1126/scitranslmed.3006294

    Article  Google Scholar 

  75. Sarasso, S., Rosanova, M., Casali, A.G., et al., Quantifying cortical EEG responses to TMS in (un)consciousness, Clin. EEG Neurosci., 2014, vol. 45, no. 1, pp. 40–49. https://doi.org/10.1177/1550059413513723

    Article  PubMed  Google Scholar 

  76. Tononi, G., Integrated information theory of consciousness: an updated account, Arch. Ital. Biol., 2012, vol. 150, no. 4, pp. 293–329.

    CAS  PubMed  Google Scholar 

  77. Casarotto, S., Comanducci, A., Rosanova, M., et al., Stratification of unresponsive patients by an independently validated index of brain complexity, Ann. Neurol., 2016, vol. 80, no. 5, pp. 718–729. https://doi.org/10.1002/ana.24779

    Article  PubMed  PubMed Central  Google Scholar 

  78. Legostaeva, L., Mochalova, E., Poydasheva, A., et al., Feasibility of individual diagnostic approach for patients with chronic disorders of consciousness, Eur. J. Neurol., 2017, vol. 22, suppl. 1, p. 147.

    Google Scholar 

  79. Legostaeva, L.A., Zmeykina, E.A., Poydasheva, A.G., et al., A new approach to the study of consciousness from the theory of integrated information point of view, Sovrem. Tekhnol. Med., 2016, no. 8 (4), pp. 251–258.

  80. Dehaene, S. and Changeux, J.P., Experimental and theoretical approaches to conscious processing, Neuron, 2011, vol. 70, no. 2, pp. 200–227. https://doi.org/10.1016/j.neuron.2011.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sergeev.

Ethics declarations

Conflict of interests. The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piradov, M.A., Suponeva, N.A., Sergeev, D.V. et al. Structural and Functional Basis of Chronic Disorders of Consciousnes. Hum Physiol 45, 811–820 (2019). https://doi.org/10.1134/S0362119719080073

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119719080073

Keywords:

Navigation